conversay

SPEECH TECHNOLDGY GOLUTIONS

Mobile Conversay

Software Development
Kit

Getting Started

© 2001 Conversational Computing Corporation. All rights reserved.

Conversational Computing Corporation
15375 NE 90th Street
Redmond, WA 98052

Conversay isinterested in feedback about the quality and effectiveness of this
document. Understanding your experiences and preferences will help us
provide you with the highest level of support. We encourage you to share your
valuable feedback with us viae-mail at

Documentation_Feedback @conversay.com.

Lead Writer: Joe Perez
Contributors: Rob Barrows and Bruce Weber
Editor: Nelson Abbey

Documentation Manager: Sarah Mollet Baranowski

LT TS

Chapter : Mobile Conversay Software Development Kit

Table of Contents

Chapter 1: INTrodUCTION ..oooiiieee e 8
Features of M obile CONVErsay SDK ...t bbb e e 9
OVEI VB ...ttt bbbt bR e b e b e b8 h et s e e e s e e et b s e b ee e b en e bt e n s 10

DocumMeNtation CONVENTIONS.ciueutrierirrererreerrese s esese s s s s s s e ese b e s s snesesn e s s 10
DOCUMENLEEI ON FOMMEES........veueevieeeteieteeee ettt n s 11
(DY Lo o1 o [T o I OO USSRRSON 13
Deploying on the Pocket PC PIatfOr M ...t e 16
Deploying on the Embedded Linux Platform ... 17
OtNEI RESDUICES.... ettt r sttt b e bt e bt e st e s e s e a e s s b b en e s ea e n e nn s 18

Chapter 2: Getting StArted..........uuueeeiiiiiiiiieeeee e 19
SUPPOrted OPEratiNg SYSLEMS....cceeieeieie ettt st re et e sae e saesaeesaesreeneesteensenneees 20
Har AWar € REQUITEMENTS........ciiiiiei ettt st e e e et e e e sreeaeesaesaaeseessaentesneenseeneenns 21
Installing Mobile Conversay SDK 0N WINGOWS........ccceiieieriiieeie e e seee s sre e e ses e e 22
Installing Mobile Conversay SDK 0N LiNUXcccuiiieiieieeiiesiseese e seesaesieseesesee e sseesessseessssanensens 24

LT TS

Table of Contents

L = To L= T SRS 26
(] o = T =PTSRS 27
(D= L= =SOSR 28
T] o= N o] o1 Ter= 14Tl T USSR 29
Creating Well-Behaved APPIICALIONS.i ittt s 30
Conversational FOCUS MaNAQEMENToouiiiiieieeeiriceerie sttt s be bbb et e e 30
Data Lifetime CONIOLccoveeeeieeieeeieeer ettt 31
Steps to Creating Well-Behaved APPlICaLIONScoueiriierire e e 32
Step 1. Creating a Speech Recognition OBJECLcccveiirireriereee e e 33

Step 2. Creating a Text-to-Speech ODJECL ..o e 33

Step 3. Creating a Context ODJECL..........coiiieiieeeer e 33

Step 4. Creating @ TOPIC ODJECEoiveeieeirieeerte e 34

Step 5. Setting and Compiling the Grammarcccooeeeireriene e 35

Step 6. Setting the Callback FUNCLIONScccoiiiiieeire e e 35

Step 7. Controlling the FOCUS.........coeciiiiceee et s 36

Step 8. Processing Callback EVENLS.........ccviieii it 36

Step 9. Releasing the Class RESOUICES..........cveiiiiiiie et 37

LT TS

Table of Contents

Understanding the Basics: The Hello World EXaMPIe..........ccviririnnineeeeenee e 37
INCluding the APl HEBOEIS........co.oiiiie e e e 38
Defining Strings for OS Portalilitycooeevriennenrese e 38
Defining the CHEllOWOITAAPD ClESScoiiiiirie it 38
Defining the Class CONSITUCLONccoeiiiirieierie et st e 39
Defining the Class DESLIUCTONc..ooiieirierie ettt bbb sre b e 40
Defining the CHelloWorldApp:: RUN Method.........ccooviieiiieirene e e 40
Creating the Speech Recognition ODJECTooiiiiiiiei e 40
Creating the Text-t0-Speech ObJECL.........ccceeriririr e e 41
Creating the Audio OULPUE ODJECLcceririiiiirere e 41
Creating 8 Context ODJECL..........iviie e 41
Adding the Context to the SR ODJECLcccoiiiriieiieee s 41
Creating @ TOPIC ODJECEeiueiuireiie ettt e et 42
Adding the Topic Object to the Context ObJECL...........coeruireririrrerreee s 42
Setting a Grammar for the TOPICceeiererererere e e 42
ComPIliNG the TOPIC ..cveeeiirieee ettt s e bt 43
Setting the Callback FUNCHION.........co.iiiiieiinet e e e 43
ACHVELING the TOPIC. ...ttt ettt b e st se e bt e e e ae s 43
Playing the .WaV FIIES.........coi ettt 43
Cadling the ReleaseResources() FUNCLION............cccviieie e 44
Defining the CHelloWorldApp:: Callback Method..........cccovieiiiinineeeeeee e 44
Recognizing the HELL O GramMMarc.cceeieieenieseeieseeste e esseseeseeseessesssessessaessessseses 45
Recognizing the BY E GFramimarccccceieiieieesee ettt see sttt 45
Recognizing the HELP GramIMarcccocveieieeie ettt e e eesreens 46
Defining CHelloWorldApp:: Rel€aSERESOUICES...........ccviieiieeierieiee e seeie et 46
Defining the Main FUNCLION........cc.ocuiiii sttt 48

LT TS

Table of Contents

Chapter 3: Designing a Voice User Interface............ccooviiiiiiiiiiiiiiiiiieieeeeee, 49
DeSIgNING FOr SPEECH ...ttt e ettt ettt bbb e e e ene e e eneeneas 50

[0] 0] 0] £ TP UTUPU ST 51
Explicit and IMPliCIt PrOMEScooiiiiiii i e e e 51
TAPEITNG PrOMPLSeeieitietie sttt st e b e e b e b e s ae st et et e sbens et e e e e eneens 52
INCIEMENTAl PrOMIPLS ..ottt et ae bbbt s b e bbb bbb s 52
FEUDACKcv ettt Rt R e r et r e e r e e r e re e 53
Tipsfor Providing FEEUDACKcc.ooiii e s 53
Dealing With FaillUreS and EFTOrS.... ..ot s e 55
Causes and Consequences of Faillures and ErrorsS.........oocooieeireeinenie e 55

Tipsfor Handling FaillureS and EITOIS........ccoiueeiieieee ettt s 55

Y DT a1 VA Y=g (o [€ =SS 58
L= = [0y TSRS 59
Chapter 4: BNF GrammMarcoooiiiiiiiiiie et e e 60
ADOUL BACKUS-NAUI FOIMM .viiitiiicteete st 61

LT TS

Table of Contents

Using BNF Grammar SWith CASS] ..ottt st sttt st seebe e 62

A SIMPIE GFAIMIMIEL ...ttt sttt sttt sttt a et e et e et et ek et et eneebeseebeseebeseebenens 63

UL Yo R = "o 1Y =0 o 11 g o [T SSR 65

MaKiNG RUIES OPLIONEL ..ottt s s ae e 66

USING RECUISIVE GIaIMIMEISeuveviaeeiiieiiieseseeseree bbbt se bbb bbb bbbt b e nne e 67
Creating M ore COmMPIEX GraMIMEIS..........cieiuiriererierieeesireeeetesesaestesbeseeseeseesseeeseseseesessessesaessesses 67

TIPS TOr FOrMING GramMIMErS........coueiuiiieie ettt sttt st s b b b e b e se e b e et s aeeae e e 70
EXAMPIE G AIMIMIA Sttt ettt et b e bbbt e et et e se et e heeaesbesbesbeseesbeseensene e e enennens 71
Chapter 5: GIOSSAIY ...ccoviiii i e e e e e aanes 73

LT TS

Introduction

Mobile Conversay ™ Software Development Kit 1.02 is Conversay’s
voice platform for creating robust voice user interfaces on personal
digital assistants, phones, and other mobile devices.

In This Section
» Features of Mobile Conversay SDK
* Overview
» Documentation Conventions
» Documentation Formats
» DevelopinginC
» Deploying on the Pocket PC Platform
» Deploying on the Embedded Linux Platform

e Other Resources

LTS

Features of Mobile Conversay SDK

Using Mobile Conversay SDK, a mobile application developer can
create applications that perform the following tasks:

Initialize and uninitialize multiple instances of speech recogni-
tion (SR) and text-to-speech (TTS) objects.

Set callback events.
Detect word, pause, speaking finished, and custom events.

Recognize a specified grammar (U.S. English supported in this
release).

Use spelling-to-pronunciation (STP) rules to enhance pronuncia-
tion and recognition accuracy.

Generate custom grammars, including multiple topics and
contexts.

Play a specified text string.

Stop, fast forward, and rewind synthesized TTS output.
Play .wav files on the audio output channel.

Input .wav files for speech recognition.

Detect the state of device microphone and speakers.

Retrieve instances of user barge-in (only on full-duplex
devices).

Retrieve detailed error and troubleshooting information.

LTS

Chapter 1: Introduction

Overview

10

“Introduction” provides an overview of the SDK’s features and
information about the documentation. You will also learn how to
access the API using the C language and how to distribute your
application on Pocket PC and embedded Linux devices.

“Getting Started” describes the system requirements and installation
procedures for integrating the Mobile Conversay SDK into your
development environment. Descriptions are provided for the API
header files, data files, sample applications, and libraries. You will
also learn how to program a simple application that listens for spe-
cific words and phrases and responds with text-to-speech synthesis.
The application also shows you how to play .wav filesto provide
helpful user feedback and help.

“Designing a Voice User Interface” describes principles and
methods of designing voice user interfaces (VUIs) for speech recog-
nition and text-to-speech applications. You will learn about the
elements of awell-designed VUI and the differences between
implicit, explicit, tapering, and incremental prompts. Tips are pro-
vided to help you avoid common mistakesin VUI design.

“BNF Grammar” describes Backus-Naur Form, a standard notation
convention used to describe speech recognition grammars. Even if
you are aready familiar with BNF notation, you can find useful
information such as a syntax reference and samples of common
notations.

Documentation Conventions

Thefont and style conventions used in this document make it easy to
identify items such as code to type, procedures, and cross-references
to related topics.

Bold indicates a user interface element.

Monospace font indicates code, file names, and directory paths.

LTS

Chapter 1: Introduction

Finding Procedures

Procedure headings begin with the word “To” so you can find them
quickly. Here is an example of a procedure:

To Find a Procedure

» Look for aheading that begins with the word “To.” Procedures
with more than one step are numbered. One-step procedureslike
this one are marked with a bullet.

Finding Tipsand Notes
Tips and notes appear with special formatting:

TIP: Tips provide recommendations that can help you
increase the effectiveness of your programming.

NOTE: Notes contain additional information about features
and techniques that are not part of a procedure.

Finding Cross-References to Related Topics

Cross-references to related sections of the SDK appear in the format
illustrated below:

See Also: “Documentation Formats,” page 11

Documentation Formats

This document isavailable in .pdf, .html, and .chm formats. The
.html and .chm help systems also include the contents of A Guide to
the CASS Services API, adocument available as a separate .pdf file.

To View the .pdf Documentation

1. If you do not have Adobe Acrobat Reader software installed on
your computer, download it from the Adobe Web site
(www.adobe.com).

2. Open one or both of these files:

a. Mobi | eConversaySDK Getti ngStart ed. pdf

Chapter 1: Introduction

LTS

n

b. Mbi | eConver saySDK_API . pdf

NOTE:

Documentationisinstalled in the docs folder of the
Mobi | e Conver say SDK folder. On Microsoft®
Windows® systems, the default location is

C.\ Program Fi | es\ Conver say\ Mbbi | e
Conver say SDK\ docs\.OnLinux systems, there
is no default location; however, atypica location is/
usr/ 1 ocal / shar e/ Conver say/

Mobi | eConver saySDK/ docs/ .

To View the .html Documentation

* Openthefile Mobi | eConver saySDK. ht i .

NOTE:

Documentationisinstalled in the docs folder of the
Mobi | e Conver say SDK folder. On Windows
systems, the default locationisC: \ Pr ogr am

Fi | es\ Conver say\ Mobi |l e Conversay
SDK\ docs\ . On Linux systems, thereis no default
location; however, atypical locationis/ usr/

| ocal / shar e/ Conver say/

Mobi | eConver saySDK/ docs/ .

To View the .chm Documentation

* Openthefile Mobi | eConver saySDK. chm

NOTE:

This help system is only available for Windows.
Computers with operating systems older than
Windows 2000 may require Microsoft Internet
Explorer 4.0 or later to view the help file.

Chapter 1: Introduction

LTS

12

13

Developing in C

You can use the C or C++ programming languages to develop
mobil e applications with the M obile Conversay SDK. This docu-
ment provides syntax and examplesin C++; however, the AP
supports C-style calls.

To program using C, it is necessary to use the CVAOBJ MACRCS. If
CVAOBJMACRGS isundefined or does not exist, then code writtenin
C will not function. Thecvaser vi ces. h file, part of the standard
API, contains the macros needed to translate C-style code into the
corresponding C++ code.

An API cdl is presented below in three different ways. Then afull
sample further illustrates the C-style calls.

C++ Code
| CVAhj ect Pt r - >AddRef () ;

C CodeUsing C Syle

| CVAQhj ect _| pVt bl - >AddRef (1 CVAQbj ect Ptr);
* This call requires that *\

* CVAOBIJMACROS has been defined. *\

C Code Using C++ Style
| CVAQbj ect Pt r- >l pVt bl - >AddRef (1 CVAQhj ect Ptr);

Full Sample

The sample below illustrates how an application can be designed
using API callsin C. This sample shows conditional statements used
to determine if CVAOBJ MACRGS has been defined. If the macrois
defined, traditional C-stylefunction callsare used; if the macrois not
defined, API calls map a C++ styleto a C structure.

#i ncl ude <wi ndows. h>

#def i ne CVAOBJMACROS
#i ncl ude "incl ude\cvaservices. h"

i nt WNAPI W nMai n(HI NSTANCE hl nst ance,
HI NSTANCE hPrevl nst ance,
LPTSTR | pCndLi ne,
i nt nCndShow)

LTS

Chapter 1: Introduction

14

{
| CVASRI nst ance *pSR;

| CVASRCont ext *pCont ext ;
| CVATopi ¢ *pTopi c;

// EE R R R R I R R R R R I R I R I R I S O

/1 Creating instances of SR and context objects
// R R S S S S Rk I I Ik S Ik Sk I S

CVACr eat el nst ance(CLSI D_CVASRI nstance, NULL, O,
1 D_I CVASRI nst ance, &pSR);

CVACr eat el nst ance(CLSI D_CVACont ext, NULL, O,
I 1 D_| CVACont ext, &pContext);

// EE R I R R R I R R R I R I I R R I R I R I S

/1 Adding a context to a SR object instance

// EE R I R R R R I R I I R I R I R R I R R I R I

#i fdef CVAOBIJMACRCS // |If C macros defined. ..
| CVASRI nst ance_Add(pSR, pCont ext);

#el se // otherw se. ..
pSR- >l pVt bl - >Add(pSR, pCont ext);
#endi f

/1 Using class factory to create object instance
CVACr eat el nst ance(CLSI D_CVATopi ¢, NULL, O,
|1 D | CVATopi c, &pTopic);

// KR R IR Rk b I bk o R Rk kI R I R

/1 Adding a topic to a context
// R S S S I R Sk S I Rk I S o S I S Rk I

#i fdef CVAOBIMACRCS // |If C nmacros defined. ..
| CVACont ext _Add(pCont ext, pTopic);

#el se // otherw se...
pCont ext - >l pVt bl - >Add(pCont ext, pTopic);
#endi f

// EIE R I I R R I R O R R I I R R R R O R I R R R I O O

/1l Setting a granmar, conpiling & activating topic
// R S S S I R Sk S I I Rk S o S o S S SRRk S S S

#i f def CVAOBIMACRCS // |If C nmacros defined. ..

| CVATopi c_Set Granmar (pTopic, T("<G ::= ONE| TWD
| THREE | FOUR| FIVE | SIX| SEVEN| EIGHT | NINE
| ZERO| OH. "), CGRAM FMI_BNF);

| CVATopi ¢c_Conpi |l e(pTopi ¢) ;

COIVETSEY
Chapter 1: Introduction

| CVATopi c_Activate(pTopic);

#el se // otherw se...
pTopi c- >l pVt bl - >Set G ammar (pTopi c,

_T("<G& ::=

ONE| TWO | THREE | FOUR | FIVE | SIX | SEVEN |
EIGHT | NNNE | ZERO| OH."), GRAM FMI_BNF);

pTopi c- >l pVt bl - >Conpi | e(pTopi c);
pTopi c- >l pVt bl - >Acti vat e(pTopi c);
#endi f
}

Chapter 1: Introduction

LT TS

15

Deploying on the Pocket PC Platform

On the Pocket PC platform, you can deploy custom applications as
well as the sample applications that are distributed with the SDK.
CASSI™ Servicesisthe API for accessing the core speech engine.
The following files must be included in the system’s/ wi ndows/
directory for CASSI Services to function properly:

* CVAServer. exe
« CVAAudi o. dl |

e CVAProxy.dll

« CVAPwW Mynt . exe

CASSI, the core speech engine, performs speech recognition, syn-
thesis, and text-to-speech. The following files must be included in
the/ wi ndows/ directory for CASSI to function properly:

+ Cbcassi . dl
 cbhael8k. aqt
+ c5ae08k. nod
 cbaellk. spk
e chae.stp

« cbaenui n. cdc

Additionally, thefollowing fileisrequired for the Maobile Conversay
environment:

« SpPref.exe

LTS

Chapter 1: Introduction

16

Deploying on the Embedded Linux Platform

On the embedded Linux® platform, you can deploy custom applica-
tions as well as the sample applications that are distributed with the
SDK. To install applications on an embedded Linux device, CASSI
dictionary and other files need to be transferred to the device. The
following filesmust beincluded inthe/ usr/ | ocal / shar e/
cassi directory or another directory specified inthe CASSI _ HOVE
environment variable:

e cbhael8k. aqt
+ c5ae08k. nod
 cbaellk. spk
e chae.stp

e cbhaenuni n. cdc

LTS

Chapter 1: Introduction

17

Other Resources

Conversay strivesto provide complete reference manuals and how-to
guides, but occasional gaps occur. If you have trouble finding an
answer in this documentation, then try these additional resources.

Sending Feedback

You can help to eliminate gaps in Conversay documentation in
future releases. If you have suggestions or comments about this doc-
umentation, then we would like to hear from you. Please send your
feedback to Documentation_Feedback@conversay.com.

Technical Support

For access to technical support, refer to your technical support con-
tract with Conversay or avalue-added reseller. If you do not have a
technical support contract, call 1-888-487-4373 to purchase one.

The Conversay Web Site

Visit http://www.conversay.com for information about Conversay
products, partners, and solutions.

The Conversay Developer Networ k

The Conversay Developer Network provides resources for devel op-
ers who are creating and implementing Conversay-based speech
technology solutions. To learn more about the CDN, visit http://
cdn.conversay.com.

Chapter 1: Introduction

LTS

18

Getting Started

This section provides information on system requirements, installa-
tion, recognizing SDK files, and an introduction to programming
well-behaved speech applications.

In This Section
» Supported Operating Systems
» Hardware Requirements
» Instaling Mobile Conversay SDK on Windows
* Header Files
e Library Files
+ DataFiles
» Sample Applications
» Creating Well-Behaved Applications
e Conversational Focus Management
» DataLifetime Control
» Stepsto Creating Well-Behaved Applications

» Understanding the Basics. The Hello World Example

LTS

Supported Operating Systems

The SDK supports the following operating systems for devel oping
your applications:

e Microsoft® Windows® 2000
e Linux® 2.4 kernel

The following embedded platforms and operating systems are sup-
ported for deploying applications:

* Pocket PC platform

e Embedded Linux 2.4 kernel

LTS

Chapter 2: Getting Started

20

21

Hardware Requirements

The Mobile Conversay™ SDK supports most hardware configura-
tions from all major Pocket PC devices equipped with microphones
and speakers. The following chip sets are supported:

StrongARM® microprocessor designed by ARM Ltd.

SH3 (SuperH™ microprocessor) from Hitachi

MIPS designed by MIPS Technologies

32-bit x86 platforms (Pocket PC emulator)

The following hardware configurations are supported on Linux plat-
forms with microphones and speakers.

* StrongARM® microprocessor designed by ARM Ltd. (embed-
ded systems)

o 32-hit x86 platforms (Linux desktop systems)
Thefollowing RAM isrequired to deploy the SDK:

16 MB RAM (32 MB recommended)

LTS

Chapter 2: Getting Started

Installing Mobile Conversay SDK on Windows

To Install Mobile Conversay SDK on Windows 2000

1. Open Setup.exe. When you install from a CD-ROM, the
program starts automatically as soon as you insert the disc into
your CD-ROM player.

2. Inthe Welcome screen of the installation wizard, click I nstall.
3. Click Next.

4. Read thelicense agreement, select the | Accept option, and click
Next.

5. Enter your user name and organization, select an access option,
and click Next.

6. Select the Complete option, and click Next.
7. Click Next, click Install, and then click Finish.

NOTE: The default installation location is C. \ Pr ogr am
Fi | es\ Conver say\ Mobi | e Conver say.

To Build the Sample Applications on the Emulator:

e Usethe Pocket PC emulator’s Start Menu to launch the
application.

NOTE: The Mobile Conversay SDK automaticaly installs all
the needed files on the Pocket PC emulator.

To Install Sample Applications on Pocket PC Devices
» Copy thefollowing files to the system’s/ wi ndows/ directory:
CVASer ver . exe
CVAAudi o. dI |
CVAPr oxy. dl |
CVAPwWr Mgnt . exe
C5cassi . dl |
c5ae08k. aqt
c5ae08k. nod
c5aellk. spk

c5ae.stp

LTS

Chapter 2: Getting Started

22

c5aenmni n. cdc

NOTE:

Before building the samples, build the Portability
library to ensure that the application functions on any
supported operating system. To do this, open the
portability.vcpfileinthesanpl es/

Por t abi | i ty folder in Microsoft embedded Visual
Studio, and then run Build All. In the sampl€'sfolder,
open the .vcp file in Microsoft embedded Visual
Studio and then run Build All.

Chapter 2: Getting Started

LT TS

23

Installing Mobile Conversay SDK on Linux

To Install Mobile Conversay SDK on Linux

1

Change directories to the directory where you wish to install the
API (for example,cd /usr /| ocal / share).

Verify that you have permission to write to the selected
directory.

Copy the distributed .tar file to the selected directory (for
example, cp /t nmp/
Cassi Servi cesLi nuxBui |l d. tar. gz).

Extract the file from the compressed .tar file (for example, t ar
xzvf Cassi Servi cesLi nuxBui | d25.tar. gz).

Two top level directories and sub-level directories are created.
Thetop directories are CASSI Ser vi ces and CASSI .

Before building anything, you must first set the environment
variables. Thefile CASSI Ser vi ces/ Exanpl es/

uni Xx_bl d_t ool s/ CASSI Ser vEnv. sh contains examples
of the variables that need to be set. Modify thisfile to point to
the new location (for example, change BASEDI Rto

BASEDI R=/ usr/ | ocal / shar e).

To place the environment variables into your current shell, run .
CASSI Ser vi ces/ Exanpl es/ bi n/ X86. / Cassi Test .

NOTE: The PATH environment variable must contain the

path to the CASSI Ser vi ces/ bi n/ and the
LD LI BRARY_PATH must contain the path to
CASSI Ser vi ces/ | i b/ for the platform you are
running (for example, export

LD LI BRARY_PATH=$LD LI BRARY_PATH: /
usr/ 1 ocal / Convser ay/ CASSI Servi ces/
X86) and PATH=$PATH: / usr/ | ocal /
Convser ay/ CASSI Ser vi ces/ X86).

To Build the Sample Applications on the Desktop:

1.
2.

cd CASSI Servi ces/ Exanpl es/ Portability

Type one of the following commands, depending on the chip set
version you want to build:

* rmake X86 (X86 version).

Chapter 2: Getting Started

LTS

24

25

 nake Linupy (Linupy ARM).

NOTE: Only one platform can be built at atime and you must
do a“make clean” between builds.

To Install Sample Applications on Embedded Linux
Devices

1. Transfer the CASSI Dictionary and the other filesin CASSI /
Dat aFi | es onto the device.

NOTE: By default, the CASSI Ser vi ces library looks for
the CASSI-related filesin/ usr /| ocal / shar e/
cassi . If you choose another location, you must set
the CASSI HOVE environment variable (e.g., export
CASSI HOVE=/ usr /| ocal / Conver say/
CASSI / Dat afi | es).

2. Copy thefiles specific to the application onto the device'susr /
| ocal / bi n directory using m ni comor some other means.

NOTE: To runthe Hello World sample, it is necessary to copy
the hellostart.wav and hellobye.wav files to the
device'susr/ | ocal / bi n directory. Thesefilesare
located in the Exanpl es/ Hel | oWor | d directory.

Chapter 2: Getting Started

LT TS

Header Files

Thefollowing header files are needed to compile and link a speech
application using the CASSI™ Services API.

Table 2-1 Header Files

File Name Description

CVAPt . h Smart pointersfor ICVA objects.

CVAServices. h Interface declarations for al objects.

CVATypes. h Public data type declarations for CASSI
Services.

STDTypes. h Additional type definitions.

COTTVETSEY
Chapter 2: Getting Started

Library Files

Thefollowing libraries must be included to create a speech applica-
tion using the CASSI Services API. All of the .lib files have the same
name (CVAApi . | i b), but they are located in different folders.

Table 2-2 Library Folders

Folder Platform

ARMdbg Debug libraries for the StrongARM chip
set.

ARM el Releaselibrariesfor the StrongARM chip
Set.

SH3dbg Debug libraries for the SH3 chip set.

SH3r el Release libraries for the SH3 chip set.

X86EMdbg Debug libraries for the Pocket PC
emulator.

X86EM el Release libraries for the Pocket PC
emulator.

NOTE: Some of these file names are different for Linux

systems.

When you create a speech application using the CASSI Services
API, you must link to one of the library files provided intheLi b
folder of the SDK. Each library fileis created for a specific platform.
Thelibrary file that you link to must correspond to the platform that
you are creating the application on.

Chapter 2: Getting Started

LT TS

27

Data Files

Datafilesare provided in the bi n directory and are used by CASSI
at run time. The table below lists and describes the data files that are
included with Mobile Conversay SDK:

Table 2-3 Data Folder

File Description

C5ae. stp Selling-to-pronunciation (STP) file.
Providesrules for postulating the
pronunciation of any words that are not
found in the dictionary or in auxiliary

lexicons.

C5ae08k. aqt Acoustic question tablefile. Required for
compiling topics, speech recognition, and
TTS

C5ae08k. nod Acoustic model file. Compares incoming

speech to known acoustic segments.
Required for speech recognition.

C5aellk. spk Speaker file. Gives acoustic values for
text-to-speech output.

C5aemai n. cdc Dictionary file. Contains pronunciations
for many common words. Required for
compiling topics, speech recognition, and
TTS.

NOTE: In the file names, “ae” denotes American English.

LT TS

Chapter 2: Getting Started

Sample Applications

The table below lists and describes the sample applications that are

included with the SDK.

Table 2-4 Sample Applications

Name

Description

Fi nanci al App

Hel | oWbr |l d

A loan calculator program.

A program that recognizes the spoken
phrase “hello world” and responds with
text-to-speech synthesis and audio
output.

LTS

Chapter 2: Getting Started

29

Creating Well-Behaved Applications

CASSI Services supports running multiple multi-threaded applica-
tions simultaneously on a mobile device. CASSI Servicesis
designed to manage the system resources it uses and arbitrate
demands for access to the audio system. However, application
designers should still create well-behaved applications to avoid con-
flicts over audio resources and to avoid stretching other resources of
the device beyond tolerable limits.

A well-behaved application manages conversational focus and exer-
cises proper data lifetime control. In the topics that follow, you will
learn about these techniques and the process used to make well-
behaved applications. A complete application, “Hello World,” is
given as an example toillustrate basic procedures and good
techniques.

Conversational Focus Management

Conversational focus restricts speech recognition to designated ele-
ments within an application. While a speech application is running,
conversational focus shifts depending on the tasks that are being per-
formed. At any given time, some elements of the application will be
“in conversational focus’ and some will be “out of conversational
focus.”

CASSI Servicesimplements conversational focus management with
thel CVASRI nst ance, | CVACont ext , and | CVATopi c inter-
faces (or simply “SR,” “context,” and “topic” objects). The SR
object owns an abject, or it can be the parent of one or more con-
texts. A context owns one or moretopics. This hierarchical
relationship is called the “focus hierarchy.” See Figure 2-1 on

page 31.

Anaobjectisinfocusif it isactive and its parents are active. A topic
isinfocusif its SR is active, and its parent SR and context object are
active. Likewise, atopic can be shifted “out of focus’ by deactivat-
ing its context or SR instance or by deactivating its parent’s context
or SR instance. Note that when a parent is deactivated and subse-
guently re-activated, its children are restored to their prior state,
assuming that the children were not explicitly activated or deacti-
vated in the interim.

Chapter 2: Getting Started

LTS

30

Figure2-1 Focus Hierarchy

5R Instance
[IEWASRInstance)

Contest Context
(ICWALC ontexd) (ICWAC ontexd)
Topic Topic Topic
[ICWATopic [ICWATopic) [ICWATopic

Data Lifetime Control

A well-designed application optimizes performance and minimizes
the amount of system resources that are used. One way to optimize
performance is to eliminate unnecessary repetition of time-consum-
ing functions like topic compilation. You should also avoid
duplication of topics and grammars whenever possible. CASSI Ser-
vicesis designed to minimize resource usage by monitoring all of the
API objects by areference-count (or ref-count). When an object isno
longer needed, its ref-count is decremented by 1; when there are no
longer any users of an object, itsref-count reaches 0 and it is auto-
matically destroyed in order to free system resources.

To ensure that this mechanism functions properly, you must call the
Rel ease method on an object's interface pointer when you are
done using it. Also, if you copy an interface pointer, it is essential
that you call AddRef on the pointer prior to doing anything else
with the original or the copy. For further information, see the
resource management rules of the COM documentation.

When an application starts, it typically attempts to create some API
objects. This attempt causes the CASSI Services server to load and
start running if it is not running already. When no applications are
using CASSI Services, the server is stopped and unloaded from
memory. Each time an application creates an API object, CASS| Ser-
vices checks available memory against the memory threshold and
returns an error if there is not sufficient memory.

LTS

Chapter 2: Getting Started

31

Steps to Creating Well-Behaved Applications

While every application is unigue, certain steps are performed in a
particular order in atypical well-behaved application:

Step 1. Creating a Speech Recognition Object
Step 2. Creating a Text-to-Speech Object
Step 3. Creating a Context Object

» To Create a Context Object

» To Add the Context to the SR Object
Step 4. Creating a Topic Object

* ToCreateaTopic

* To Add the Topic to the Context

Step 5. Setting and Compiling the Grammar
* To Set aGrammar for the Topic

» To Compilethe Topic

Step 6. Setting the Callback Functions

Step 7. Controlling the Focus

* To Gain Control of Focus

* To Relinquish Control of Focus

Step 8. Processing Callback Events

Step 9. Releasing the Class Resources

» ToRelease The SR Object

* ToRelease The TTS Object

LTS

Chapter 2: Getting Started

32

Step 1. Creating a
Speech Recognition
Object

Step 2. Creating a
Text-to-Speech
Object

Step 3. Creating a
Context Object

A speech recognition (SR) object initiates the application to begin
listening to the user’s speech. The SR object is optional if your
program does not require speech recognition.

To Instantiate a Speech Recognition Object

e Cdl CVACr eat el nst ance with the interface identifier for
the | CVASRI nst ance object.

Sample Code
CVACr eat el nst ance(/1 Instantiates an SR object
CLSI D CVASRI nstance, // Oass ID

NULL, /1 NULL

0, /1 NULL

1D I CVASRI nstance, // Interface ID

(voi d**) &m pSR /1l Pointer to object

)

Create atext-to-speech (TTS) object to enable the program to talk
back to the user. The TTS object isoptional if your program does not
require text-to-speech synthesis.

To Instantiate a Text-to-Speech Object

e Cdl CVACr eat el nst ance with the interface identifier for
thel CVATTSI nst ance object.

Sample Code

CVACr eat el nst ance(/1 Instantiates TTS object
CLSI D CVATTSInstance, [// Class ID

NULL, /1 NULL

0, /1 NULL

I'1 D_I CVATTSI nst ance, /1l Interface ID

(voi d**) &m pTTS /1 Pointer to object

)

Create a context and add it to the SR object. At least one context is
required, but you may create multiple contexts if necessary.

To Create a Context Object

e Cdl CVACr eat el nst ance with the interface identifier for
the | CVACont ext abject.

LTS

Chapter 2: Getting Started

Sample Code
CVACr eat el nst ance(

CLSI D_CVACont ext , /[l dass ID
NULL, /1 NULL

0, /1 NULL

I 1 D_|I CVACont ext , /1l Interface ID

(voi d**) &m pCont ext /1 Pointer to object
);
To Add the Context to the SR Object

» Cadll the Add method of thel CVASRI nst ance object with the
| CVACont ext object.

Sample Code
m _pSR- >Add(m pContext // mpSR is pointer to
); /'l the SR object

Step 4. Creating a Create atopic and add the topic to the context. At least one topic is
Topic Object required for each context. However, you may have multipletopicsin
each context.

To Create a Topic

e Cdl CVACr eat el nst ance with the interface identifier for
thel CVATopi ¢ object.

Sample Code

CVACr eat el nst ance(

CLSI D_CVATopi c, /1 Cass identifier
NULL, /1 NULL

0, /1 NULL

|1 D_I CVATopi c, /'l Interface identifier

(voi d**) &m pTopi ¢ /1 Pointer to object
)
To Add the Topic to the Context

e Cadll the Add method of the | CVACont ext object with the
| CVATopi ¢ object.

Sample Code
m pCont ext - >Add(m pTopi ¢ // m pContext is pointer
); /1l to the context object.

LT TS

Chapter 2: Getting Started

Step 5. Setting and
Compiling the
Grammar

Step 6. Setting the
Callback Functions

35

Define the grammar and compile it to enable the topics to be recog-
nized by the speech recognition engine. Use atext string in BNF
format to supply the grammar.

To Set a Grammar for the Topic

e Call the Set G ammar method of the | CVATopi ¢ object with
atext string.

Sample Code

m _pTopi c- >Set G anmar (

TEXT(" <si npl egrammar > ::=\
HELLO WORLD: HELLO | HOWDY_WORLD: HELLO | \
H _WORLD: HELLO | GOODBYE: BYE | \
HELP: HELP. "), GRAM FMI_BNF);

To Compile the Topic
e Call the Conpi | e method of thel CVATopi ¢ object.

Sample Code
m _pTopi c- >Conpi | (/1 Conpiles the granmar
)

Set a callback function that is fired when a speech recognition event
occurs. If your application requires other events, such as knowing
when an utterance is finished, you need to set callback functions for
those events.

To Set a Callback for the Topic

e Cadl the Set Event Cal | back method of the | CVATopi ¢
object.

NOTE: Usethe Set Event Cal | back method of the
| CVASRI nst ance and | CVACont ext objectsto
set callback functions for objects other than topic
objects.

Sample Code

m _pTopi c- >Set Event Cal | back(

WORD_EVENT, /'l Event type

this, /1 Application data

Cal | back) ; /1 Pointer to callback function

LT TS

Chapter 2: Getting Started

Step 7. Controlling
the Focus

Step 8. Processing
Callback Events

36

The next step is to establish the conversational focus to gain control
of the device's audio system. Focus control is required when you
have multiple contexts and topics. The contexts and topics must be
activated and deactivated under various conditions to control what
part of the program the user can interact with. Evenin avery simple
application with a single context and topic, the topic must still be
activated and deactivated.

To Gain Control of Focus

+ Cdl theAct i vat e method of thel CVATopi ¢ object.

NOTE: The parent SR and context objects of the topic object
must also be active for the topic to be put in focus.

Sample Code
m pTopi c- >Activate(// Puts topic in focus

);
To Relinquish Control of Focus

e Cadl theDeacti vat e method of the | CVATopi ¢ object.

NOTE: A topic can aso be put out of focus by deactivating its
parent context or SR instance objects.

Sample Code
m pTopi c->Deactivate(// Puts topic out of focus

)

The next step isto process your callback events. For example, you
can synthesi ze a text-to-speech response or play a .wav file.

To Process Callback Events

1. Useconditional statements that allow you to detect each
condition.

2. For each event you want to detect, call theevent Dat a of the
Event Msg structure.

Sample Code
if
(! _tcscnp(pEvent Msg- >event Dat a. RecoWwr d. pszTag,
TEXT("HELLO'")))

LTS

Chapter 2: Getting Started

Step 9. Releasing
the Class Resources

37

{
/1 Say an acknow edgenent
pThi s->m pTTS- >Speak(
TEXT("H , HOW ARE YOU TODAY?"), false);
}
el se
i f
(! _tcscnp(pEvent Msg- >event Dat a. RecoWwr d. pszTag,
TEXT("BYE")))
{
/] Say an acknow edgenent
pThi s->m pTTS- >Speak(
TEXT(" GOODBYE, HAVE A NI CE DAY."), false);
}
br eak;

When your application is compl eted, release the class resources for
any objects you have created.

To Release The SR Object

» Cadl the Rel ease method of thel CVASRI nst ance object
with the | CVACont ext object.

Sample Code
m pSR- >Rel ease(); // Rel eases the SR obj ect
To Release The TTS Object

e Call the Rel ease method of thel CVASRI nst ance object
with the | CVACont ext object.

Sample Code
m pTTS->Rel ease(); // Releases the TTS object

Understanding the Basics: The Hello World Example

The Hello World example is a complete application that demon-
strates the CASSI Services speech recognition, text-to-speech, and
audio streaming capabilities. The program plays a.wav file that
prompts the user to say “hello world” or “goodbye.” The program
listens for aresponse and offers areply through text-to-speech syn-

LTS

Chapter 2: Getting Started

Including the API
Headers

Defining Strings for
OS Portability

Defining the
CHelloWorldApp
Class

38

thesis. The program terminates when the user says “goodbye.” You
canfind hel | owor | d. cpp and the associated .wav filesin the
sanpl es folder of the Mobile Conversay SDK.

This section of code includes the CASS| Services API filesand a
library of functionsthat are portable abstractions of operating system
calls. These functions have names that begin with the word “ Porta-
ble.” Code for these functionsisinportabi | i ty. h and
portability.cpp.

Sample Code

#i ncl ude " STDTypes. h"

#i ncl ude " CVAServi ces. h"
#i ncl ude "portability.h"

This code defines strings that account for differencesin the path-
naming conventions on various platforms supported by the CASSI
Services API.

Sample Code

#i f def _W N32

LPTSTR Hel loStartFile =
TEXT("\\wi ndows\\ hel ostart.wav");
LPTSTR Hel | oByeFil e =
TEXT("\\wi ndows\\ hel | obye. wav");
#endi f

#i f def uni x

LPTSTR Hel |l oStartFile =
TEXT("hel | ostart.wav");

LPTSTR Hel | oByeFil e =
TEXT(" hel | obye. wav");

#endi f

This code defines the class that implements simple speech
recognition.

Sample Code
cl ass CHel | oWor | dApp

{
publi c:
/'l The constructor
CHel | oVor | dApp() ;

LTS

Chapter 2: Getting Started

39

!/l The destructor
~CHel | oWor | dApp() ;

/] Start the app, return when it exits
CVAHRESULT Run();

private:

/1 Disabl e copy operator
CHel | oWor | dApp(const
CHel | oVor | dApp&)

/1 Disable assign operator
CHel | oWor | dApp& oper at or =(const
CHel | oVr | dApp&)

/1 Define the topic's callback
static void Call back(const Event Msg*,
voi d*, void*);

/!l Release all the class resources
CVAHRESULT Rel easeResources();

/1 An event, when set, causes app to exit
HANDLE m exi t Event;

/1 Interface to speech reco object
| CVASRI nst ance* m pSR;

/1 Interface to speech synthesis object
| CVATt sl nst ance* m pTTS;

/1l Interface to a context object
| CVACont ext * m pCont ext ;

/1 Interface to a topic object
| CVATopi c* m pTopi c;

/1l Interface to audi o output stream object
| CVAAudi oQut St reant m pQut St ream

Defining the Class This code defines amethod that is used to construct the CHel -
Constructor | oWor | dApp class.

Sample Code
CHel | oVor | dApp: : CHel | oWbr | dApp()
:m exitEvent (0), mpSR(0), mpTTS(0),

COIVETSEY
Chapter 2: Getting Started

Defining the Class
Destructor

Defining the
CHelloWorldApp::
Run Method

Creating the
Speech Recognition
Object

m pCont ext (0), m pTopic(0), m pQutStrean(0)
{

}

This code defines amethod that is used to destroy the CHel -
| oWor | dApp class.

Sample Code
CHel | oVWor | dApp: : ~CHel | oWor | dApp()

{
}

This code defines a method that is used to instantiate the speech rec-
ognition, text-to-speech, and audio objects. This method is also
responsible for creating the context, topic, and grammar.

Sample Code
CVAHRESULT CHel | oWor | dApp: : Run()
{
CVAHRESULT res = CVAE FAI L;
/Il Create event to wait until tine to exit
m exi t Event = Portabl eCreat eEvent ();
if (!mexitEvent)

return CVAE FAI L;

This codeis part of the CHel | oWor | dApp: : Run method. It
instantiates the speech recognition object.

Sample Code
/'l Instantiate an SR object, leave it active
res = CVACreat el nstance(CLSI D_CVASRI nst ance,
NULL, O, I1D_I CVASRI nstance, (void**)&m pSR);
i f (CVAFAILED(res))
{

Rel easeResources();

return res;

Chapter 2: Getting Started

LT TS

40

Creating the Text-
to-Speech Object

Creating the Audio
Output Object

Creating a Context
Object

Adding the Context
to the SR Object

This codeis part of the CHel | oWor | dApp: : Run method. It
instantiates the text-to-speech object.

Sample Code
/1 Instantiate TTS object, leave it active
res = CVACreatel nstance(CLSI D_CVATTSI nst ance,
NULL, O, I|I1D_I CVATTSI nstance, (void**)&m pTTS);
i f (CVAFAI LED(res))
{

Rel easeResour ces();

return res;

This codeisthe part of the CHel | oWor | dApp: : Run method. It
instantiates the audio output stream object.

Sample Code
/1 Instantiate an audi o output stream
/1 object, leave it active
res = CVACreat el nstance(CLSI D_CVACut put St ream
NULL, O, I1D_I CVACut put Stream
(voi d**)&m pQut Strean) ;
i f (CVAFAI LED(res))
{
Rel easeResources();
return res;

This codeisthe part of the CHel | oWor | dApp: : Run method. It
instantiates the context object.

Sample Code

/1l Create a context, leave it active

res = CVACreatel nstance(CLSI D CVACont ext, NULL,
0, 11D ICVAContext, (void**)&m pContext);

i f (CVAFAI LED(res))

{

Rel easeResour ces();
return res;

This section of code is the part of the CHel | oWbr | dApp: : Run
method. It adds the context object to the speech recognition object.

LTS

Chapter 2: Getting Started

a4

Creating a Topic
Object

Adding the Topic
Object to the
Context Object

Setting a Grammar
for the Topic

/1 Add the context to the SR object
res = m pSR->Add(m pCont ext);
i f (CVAFAI LED(res))
{
Rel easeResources();
return res;

This section of code is part of the CHel | oWbr | dApp: : Run
method. It creates a topic object.

/1l Create a topic, |eave inactive for now
res = CVACreatel nstance(CLSI D_CVATopi ¢, NULL,
0, 11D ICVATopic, (void**)&m pTopic);
i f (CVAFAI LED(res))
{

Rel easeResour ces();

return res;

This codeisthe part of the CHel | oWor | dApp: : Run method. It

adds the topic object to the context object.

/1 Add the topic to the context
res = m pContext->Add(m pTopic);
i f (CVAFAI LED(res))
{

Rel easeResour ces();

return res;

This section of codeis part of the CHel | oWbr | dApp: : Run
method. It sets the grammar for the topic object.

/1 Set a grammar for the topic using BNF
res = mpTopi c->Set G amar (
TEXT(" <si npl egranmar> ::=\
HELLO WORLD: HELLO | HOWDY_WORLD: HELLO |
H _WORLD: HELLO | GOODBYE: BYE | \
HELP: HELP. "), GRAM _FMI_BNF) ;
i f (CVAFAI LED(res))
{
Rel easeResour ces();
return res;

Chapter 2: Getting Started

\

LT TS

42

Compiling the This code is the part of the CHel | oWor | dApp: : Run method. It
Topic compiles the grammar of the topic object.

/1 Conpile the gramar
res = mpTopi c->Conpil e();
i f (CVAFAI LED(res))

{
Rel easeResources();
return res,;
}
Setting the This code sets the callback function.
Callback Function
Sample Code

/1 Set a callback for the topic

res = mpTopi c- >Set Event Cal | back(WORD_EVENT,
this, Callback);

i f (CVAFAI LED(res))

{

Rel easeResour ces();
return res;

Activating the This code activates the topic.
Topic
Sample Code
/1 Activate the topic
res = mpTopic->Activate();
i f (CVAFAI LED(res))
{

Rel easeResources();
return res;

Playing the .wav This code playsthehel | ost art . wav and hel | obye. wav
Files files.

Sample Code
/1 Play the "hellostart.wav" file
/1 This file contains the recording:

LT TS

Chapter 2: Getting Started

Calling the
ReleaseResources()
Function

Defining the
CHelloWorldApp::
Callback Method

/1 "You can say hello world or you can say
/1 Goodbye."
res = mpQut Stream >Submit Fil e(
HelloStartFile, false);
i f (CVAFAI LED(res))
{

Rel easeResources();

return res;

}

/1 Wait for the exit event

/1 When received,

/1 proceed with cleanup and return

Port abl eWi t OnEvent (m exit Event, | NFI NI TE);

/1 Play the "hell obye.wav" file

/1 This file contains the recording:
/1 "CGoodbye!"

res = m pQut Stream >Submit Fil e(

Hel | oByeFil e, false);

i f (CVAFAI LED(res))

{

Rel easeResources();
return res;

This code callsthe Rel easeResour ces() function.

Sample Code
/'l Release all resources used by the class
res = Rel easeResources();

return res,;

}

This code processes the callback function. It is called when aword or
phrase in the topic's grammar is recognized. If the application recog-
nizes the HELLO, BYE, or HELP grammar, it responds appropriately.

Sample Code
voi d CHel | oWor | dApp: : Cal | back(const Event Msg*
pEvent Msg, voi d* pvUserData, void* pv)

{

/1l Get the 'this' pointer (static nmenber

/1 functions do not have direct access to it)
CHel | oWor | dApp* pThis =

LT TS

Chapter 2: Getting Started

Recognizing the
HELLO Grammar

Recognizing the
BYE Grammar

45

(CHel | oWor | dApp*) pvUser Dat a;

/1 Process according to the event type
swi t ch(pEvent Msg- >eEvent Type)

{
case WORD_EVENT:

/1 Check the received word's tag
/1 and respond accordi ngly

This code isthe case in the conditional statement that checks for the
HEL L O grammar and responds.

Sample Code
i f
(! _tcscnp(pEvent Msg-
>event Dat a. RecoWwr d. pszTag,
TEXT("HELLO")))

{

/1 Say an acknow edgenent

pThi s->m pTTS- >Speak(

TEXT("You said hello world."), false);
}

el se

This code isthe casein the conditiona statement that checks for the
BYE grammar and returns an exit event.

Sample Code
i f
(! _tcscnp(pEvent Msg-
>event Dat a. Recowr d. pszTag,
TEXT("BYE")))

{

/'l Set the exit event

// This will cause

/1 run to unblock and return

Por t abl eSi gnal Event (pThi s->m exi t Event);
}

el se

LT TS

Chapter 2: Getting Started

Recognizing the
HELP Grammar

Defining
CHelloWorldApp::
ReleaseResources

This code is the case in the conditional statement that checks for the
HEL P grammar and responds. Because this is a sample program,
thereis limited error handling. In an actual application, unexpected
events would be handled al so.

Sample Code
i f
(! _tcscnp(pEvent Msg-
>event Dat a. Recowr d. pszTag,
TEXT("HELP")))

{
/1 Play the "hellostart.wav" file
/1 This file contains a recording:
/1 "You can say hello world, or you can
/1 say goodbye."
pThi s->m pQut St ream >Subnit Fi | e(
Hel l oStartFile, false);

}
el se

{
/1l Unexpected phrase

}

br eak;

defaul t:

/1 Unexpected event
br eak;

}

This code rel eases the system resources used by the class.

Sample Code
CVAHRESULT CHel | oWor | dApp: : Rel easeResour ces()

{
CVAHRESULT res = CVACXK;

CVAHRESULT returnVal = CVACK;

/1 Renove the topic fromthe context
if (mpTopic & m pCont ext)

{
res = m pCont ext - >Renove(m pTopi c);
i f (CVAFAI LED(res))

{

returnVal = res;

}

}

Chapter 2: Getting Started

LT TS

46

/1 Remove the context fromthe SR object
if (mpContext &% m pSR)

{
res = m pSR->Renove(m pCont ext);
i f (CVAFAI LED(res))

{

returnVal = res;

}

}

/1 Rel ease the topic

if (mpTopic)

{

m _pTopi c- >Rel ease();
m pTopic = O;

/'l Rel ease the context
i f (m_pContext)
m pCont ext - >Rel ease() ;
m pCont ext = O;
/1l Rel ease the audi o output stream
if (mpQutStream
m pQut St ream >Rel ease();
m pQut Stream = O;
/'l Rel ease the SR object
if (mpSR
m pSR- >Rel ease();
m pSR = 0O;
/'l Rel ease the TTS obj ect
if (mpTTS)
m pTTS- >Rel ease();
m pTTS = 0O;
/1 Delete the event object
if (mexitEvent)

Por t abl eDel et eEvent (m exi t Event);

Chapter 2: Getting Started

LT TS

47

m exi t Event = 0;

}

return returnVval ;

}

Defining the Main This code is the program's main function. It instantiates the CHel -
Function | oWor | dApp class and startsit running by calling Run() . When
Run() returns, the program exits.

Sample Code
int _ _cdecl main(int argc, char *argv[])

{
CHel | oVWor | dApp app;

CVAHRESULT res = app. Run();
/1 Won't return until conmmanded to do so
i f (CVAFAI LED(res))

{
return -1;
}
return O;
}

LT TS

Chapter 2: Getting Started

Designing a Voice
User Interface

This section provides an overview of the principles that you should
consider when incorporating a voice user interface (VUI) into a
graphical user interface (GUI).

In This Section
» Designing For Speech
e Prompts
» Explicit and Implicit Prompts
» Tapering Prompts
* Incremental Prompts
* Feedback
» Tipsfor Providing Feedback
» Dealing with Failures and Errors
» Causes and Conseguences of Failures and Errors
» Tipsfor Handling Failures and Errors
* Mixing VUIsand GUIs

* Latency

LTS

Designing For Speech

To be effective, avoice user interface (VUI) must provide a compel-
ling benefit to your users. With that benefit in mind, design the
application with speech in mind from the onset. Even if you are
adding speech to an existing GUI, you should rethink the fundamen-
tal tasks from a conversational perspective.

Some tasks, easily represented in a GUI, may present challenges to
represent in a VUI environment. For example, in a calendar applica
tion, finding exact dates is easy when the user can see a visual
representation of the calendar and click the correct date. In the VUI
environment, users think in relative terms. They may say things like
“aweek from yesterday” or “next Tuesday.” Understanding a user’s
approach to averbal task in relation to their approach to avisual task
isan important principlein VUI design.

LTS

Chapter 3: Designing a Voice User Interface

51

Prompts

Well-designed prompts are critical to the success of any VUI appli-
cation. Prompts serve two purposes:

» Asacuewhenitisthe user’sturnto speak.
» Asanindication of what may be spoken.

Because of thisdual purpose, be careful to ensure that users can dis-
tinguish prompts from instructions or other non-interactive
components. In addition, follow these tips as you design your
prompts:

» Keep prompts short.
» Prompts should be preceded by instructions.

» Place important information immediately preceding the
expected user response.

Explicit and Implicit Prompts

Prompts fall into two general categories: explicit and implicit.
Explicit (also called directive) promptsindicate exactly what the user
should say. Implicit prompts are open-ended; they do not list possi-
ble responses.

Example of an Explicit Prompt

System: Welcometo XY Z Brokerage. You can check an
account balance, get a stock quote, or buy a stock.
Say “check balance,” “get quote,” or “buy a stock.”

Explicit prompts are useful in constraining user responses.

Example of an Implicit Prompt

System: Welcometo XY Z Brokerage. What would you like

to do?
Implicit prompts are more conversational and can provide a natural
interaction for the user. However, implicit prompts allow more room
for user error.

LTS

Chapter 3: Designing a Voice User Interface

52

Tapering Prompts

With tapering prompts you can make a repeated prompt shorter the
second or third timethat it is given. By removing unnecessary words
or explicit directions, a more natural interchange is achieved.

Example of a Tapered Prompt

System: You have three new messages. Thefirst isfrom
Mark Adams. Say “read message,” “ skip message,”
or “delete message.”

You have two messages remaining. The next is
from Mary Ruiz.

Incremental Prompts

Incremental prompts provide information to the user in small frag-
ments. Each prompt is followed by a pause to allow for the user’s
response. Incremental prompts can be atime saver for expert users.
However, they can be problematic for novice users and can lead to
collisions between the subsequent prompt and the user’s spoken
response.

Example of an Incremental Prompt

System: Welcometo XY Z Brokerage. What would you like
to do?

(Pause.)

You can check an account balance, get a stock
quote, or buy a stock.

(Pause.)

Say “check balance,” “get quote,” or “buy a stock.”
See Also: “Latency,” page 59

LTS

Chapter 3: Designing a Voice User Interface

Feedback

Feedback is a system output designed to inform users of the results
of their actions. Feedback can be avisual cue, spoken in the form of
text-to-speech (TTS), an auditory tone, or a combination of these ele-
ments. Feedback should provide users with the following
information:

» Wastheir utterance heard?
» If heard, was the speech correctly interpreted?

» Isthe system processing data or waiting for input?

Tips for Providing Feedback

Follow these tips when providing feedback to the user:

Implicitly Verify Commands That Present Data

Avoid literal feedback. Users get frustrated when a system con-
stantly repeats, “ You said...” and then re-states the exact response
that it recognized. Thisis especially trueif the system iswrong.
Instead, implicitly verify commands by incorporating the verifica-
tion into the next prompt. For example...

System: Which stock would you like to purchase?
User: XYZ Data.

System: How many shares of XY Z Datawould you like to
purchase?

Explicitly Verify Commands That Destroy Data or Are
Irreversible

Be explicit when the cost of the action is high. For example...

System: Which contact would you like to delete?
User: Amy Wang.

System: To delete the contact for Amy Wang, say “yes’ or
“no.

LTS

Chapter 3: Designing a Voice User Interface

Providea Transcription in Mixed Modal Systems

When combining VUI with GUI elements, provide atext transcrip-
tion of what the user said. While literal feedback can be annoying to
the user when provided via spoken system output, atext transcription
can let the user know that the utterance was recognized.

Provide Other Visual Cuesin Mixed Modal Systems

Visual cues, such as VU meters or icons, provide the user with feed-
back about the system. When working in amixed modal system, itis
best to provide visual cues about the system state whenever possible.

LT TS

Chapter 3: Designing a Voice User Interface

55

Dealing with Failures and Errors

CASSI™ recognizes a high percentage of user input, but occasiona
recognition failures and user errors do occur. It is up to the system
designer to create an interface that accounts for recognition failures
and minimizes the instances of user error.

Causes and Consequences of Failures and Errors
Common causes of failures and errors include the following:

e Hardware, such as microphone, turned off or not ready
e Background noise

e User spoke too soon

» Utterance not in grammar

e User paused too long during utterance

Word is out of vocabulary

Failures and errors can have serious consequences in speech applica
tions, breaking the user’s perception of a human conversational
model. Whileit is generally not agood ideato try to convince users
that they are interacting with an amost-human machine, it isimpor-
tant to realize that users will frequently interact with the system as if
it were human. When users speak to the system, they expect the
system to respond.

Another consequence of afailure or error is that the user must ini-
tiate the correction. For example, if the user mispronounces aword
and the system fails to recognize it, then the user must take action to
correct the pronunciation.

Tips for Handling Failures and Errors

Follow these tips when handling system failures and user errors:

LTS

Chapter 3: Designing a Voice User Interface

56

Do Not Use Repetitive M essages

Thethird or fourth time that an error prompt is repeated, it may lead
to user frustration or anger, regardless of how politely the messageis
phrased.

Provide Progressive Assistance

Instead of just rephrasing the error prompt, incrementally provide
more help to the user. For example...

Prompt 1: Say again.
Prompt 2: Sorry. Please rephrase.

Prompt 3: Still no luck. Please speak clearly, but do not
overemphasize.

See Also: “Incremental Prompts,” page 52

Provide a M odel

One way of dealing with errorsisto provide the user with a model.
For example...

System: On what date would you like to make the new
appointment?

User: A week from tomorrow.

System: I'm sorry. | don’t understand. Say the date of the
appointment. For example, say “April 23, 2001.”

Provide Explicit Choices

Re-prompting with explicit choices can orient a user. For example...

System: Would you like to edit this contact?
User: | want the phone number.

System: | don’t understand. Would you like to edit this con-
tact? Say “yes’ or “no.”

LT TS

Chapter 3: Designing a Voice User Interface

Use Visual Cuesif Available

Sometimes errors can be missed by the user. When designing for a
mixed modal system, use visual cuesto help the user recognize the
occurrence of an error.

LT TS

Chapter 3: Designing a Voice User Interface

57

58

Mixing VUIs and GUIs

In general, theissuesinvolved in designing prompts for mixed modal
systems are the same as they are in VUI-only systems. Most impor-
tantly in mixed modal systems, you should keep in mind the ways
that the user will access the interface.

For example, while some devices, such as cell phones, may be
equipped with visual displays, you may be better off thinking in
terms of voice only as you design such aVVUI. When users interact
with the voice interface of acell phone, they may not be able to see
the GUI. However, users of PDA devices may refer to the screen
frequently.

If the screen isvisible while the user speaks, then a GUI can be
useful in providing feedback to the user. For example, a GUI can
display atranscription of what the user has spoken, letting the user
know if the system has recognized the command. GUIs can also
provide avisual indication of the state of the system, such as whether
or not the system is listening or processing an utterance.

LTS

Chapter 3: Designing a Voice User Interface

Latency

In aVUI, pauses convey meaning to the user that you may not
intend. System pauses that are inherent in the design of the system,
often referred to as latency, can lead to misinterpretation by the user.
For example, latency may be interpreted as a cue to speak. If your
deviceis proneto system delays, then make sure to take these delays
into account when designing your prompts.

LT TS

Chapter 3: Designing a Voice User Interface

59

BNF Grammar

This section of the documentation defines the grammar format,
Backus-Naur Form (BNF), which is recognized by the Conversay ™
speech engine.

In This Section
* About Backus-Naur Form
* Using BNF Grammars with CASSI
e A Simple Grammar
» Using Tag Mapping
» Making Rules Optional
» Using Recursive Grammars
» Creating More Complex Grammars
» Tipsfor Forming Grammars

» Example Grammars

LTS

61

About Backus-Naur Form

BNF was originally created to describe the syntax of the Algol 60
programming language. The convention was later modified and now
describes the syntax of many languages. Easily |earned and unam-
biguous, BNF defines agrammar with mathematical precision andis
abroadly accepted standard. CASSI ™, the speech engine of the
Mobile Conversay API, also uses BNF.

LTS

Chapter 4: BNF Grammar

62

Using BNF Grammars with CASSI

Grammars define the rules that alanguage must obey to be inter-
preted correctly. Speech recognition systems use grammars for an
important reason: grammars allow the systemsto achieve reasonable
recognition accuracy and response time by constraining what the
speech engine listens for. For example, a simple window control
grammar may include phrases such as “open file,” “close window,”
and “expand window.” The speech enginelistens only for commands
that make sense in the context of the window control grammar.

BNF uses a set of rules for terminal and non-terminal symbols. Ter-
minal symboals, or characters, are words or phrases that the speech
recognition system is listening for. Non-terminal symbols are brack-
eted by the < and > meta-symbols. Non-terminals are also called
rules. Each rule in the grammar must have a corresponding terminal
or another rule.

In a spreadsheet program, the grammar may include phrases like
“new spreadsheet,” “open file,” “closefile,” “savefile,” “exit,” and
“help.” In BNF format, this grammar is represented with this text
string:

"<mai nmenu> :: = NEW SPREADSHEET | OPEN_FILE | \
CLOSE_FILE | SAVE_FILE | EXIT | HELP."

The definition follows the definition indicator (; : =) and states that
<mai nmenu> isdefined as “new spreadsheet,” “open file,” “close
file)” “savefile,” “exit,” and “help.” If <mai nmenu> isthe
grammar listened for at the spreadsheet’s main menu interface, then
the speech engine can listen for any of these phrases when the user
visits the spreadsheet’s main menu. The definition indicator isaBNF
meta-symbol that may be read as either “consists of” or “defined as.”
The indicator always has a definition on its right-hand side.

In the example above, the| meta-symbol (read as “or”) separates
different possible alternativesin a definition. The speech recognition
engine will listen for any of the options separated by the | meta-
symbol.

The. meta-symbol is used to indicate the end of a definition. You
can include more than one definition in atext string by using the .
meta-symbol to separate them.

LTS

Chapter 4: BNF Grammar

63

The _ meta-symbol concatenates wordsin a phrase. For example,
you may want the speech recognition engine to return “save file’
rather than “save” and “file.”

NOTE: In C and C++ programs, BNF grammars are passed to
the CASSI speech engine through text strings.
Therefore, make sure to treat the BNF grammar asa
text string by surrounding it with quotation marks
("") and concatenating more than one line with the\
character.

Table4-1 The Elements of BNF

Element Appearance Description

Terminal t ext Any character or character
sequencethat occursin atext
string and isaword or
phrase that the speech
recognition systemis
listening for.

Non-Ter minal <rul e> Any word in angle brackets.
Must be defined somewhere
within the string. In a speech
grammar, the word in angle
bracketsisalso caled arule.

Definition L= Used to define aterminal or

Indicator non-terminal, which resides
on theleft side. Theterminal
or non-terminal on the right
side isthe definition.

Or Indicator | Separates alternativesin a
definition.

Definition End . Indicates the end of a

Indicator definition.

A Simple Grammar

Suppose we want to create agrammar that defines the syntax needed
to look up the telephone area code of acity. The grammar could be
part of a program that allows users to say an area code and get infor-
mation about the place. To construct the BNF grammar, words and

LTS

Chapter 4: BNF Grammar

phrasesthat users might say to find specific area codes arelisted. For
example, “area code,” “show methe areacode,” and “where isthe
area code?’

To express a permissible sequence of words, the words are listed in
the text string and separated by an underscore. The word pair

AREA CCDE alowsthe phrase “area code’ to be recognized, but not
“code area.” These two words are terminals in BNF grammar, so
they stand alone without further explanation. Terminals alow for
any number of wordsin a sequence, such as

VWHERE_| S_AREA CODE.

People typically use variations of phrases, depending on the individ-
ual person or context. To allow more than one word sequence, the
grammar usesthe or (|) indicator, like this:

" AREA CODE | WHERE_|'S _AREA CODE | \
LOOK_UP_AREA_CODE. "

The or indicator allows the program to recognize any of the three
phrases. It is necessary in BNF notation to label such combinations
of words and aternatives with arule that describes how the user can
use the phrases. This alows the program to refer to the alternatives
many times in shorthand by a specified name. For instance, we could
name the group of alternativesst art _phr ase:

"<start_phrase> ::= AREA CODE | \
VWHERE | S_AREA CODE | LOOK UP_AREA CCDE."

NOTE: The definition indicator separates the defined word
and is terminated with a. meta-symbol.

A grammar can consist of more than one rule. For example, the
grammar that looks up the area code could continue like this:

"<area_code> ::= <digit> <digit> <digit>."
"<digit> ::= OH| ZERO| ONE | TWO | THREE | \
FOUR | FIVE| SIX| SEVEN| EIGHT | NI NE "

This simple grammar includes arule, <ar ea_code>, that is com-
prised of other rules. Thisrule structure ensures that only area codes
comprised of three digits will be recognized.

LTS

Chapter 4: BNF Grammar

65

Using Tag Mapping

Recall the previous example that showed phrases in the main menu
of a spreadsheet program, such as “open file” and “exit.” While this
gives users away of performing tasks based on a certain phrase, you
should design with the knowledge that users will use many different
words or different phrases to perform atask. For example, a user
might say “quit.” Since “quit” isnot part of the grammar, the speech
engine cannot recognize the word. Fortunately, thisis an easy
problem to avoid. It is possible to use a tag within the grammar to
map more than one word to the same tag. Thetag is placed to the
right of the word and a (:) in the definition, like this:

"<mai nmenu> :: = NEW SPREADSHEET | OPEN _FILE |
CLOSE_FILE | SAVE FILE | EXIT:-EXIT | QUT:EXIT |
HELP. "

In the example above, the words “ exit” and “quit” both have atag of
EXI T. It is possible to map any number of words or phrasesto the
same tag. Using multiple tag mapping relieves some of the burden of
accuracy from the user. The grammar shown below offers more flex-
ibility because of the multiple tag mapping:

"<hel |l o_or_bye> ::= HELLO HELLO | HOADY: HELLO |
H : HELLO | GOODBYE: BYE | BYE: BYE."

The sampl e code includes a tag on each side of the

<hel | o_or _bye> terminas. In this example, the tags allow the
grammar to understand “hello,” “howdy,” and “hi,” as different ways
of saying “hello.” Similarly, it recognizes “goodbye” and “bye,” as
equivalent to “bye.”

Tags also alow the grammar to concatenate spoken digitsinto a
single number, making the underlying processing more efficient.
Thisis not arequirement because CASSI recognizes single digits by
the words they are associated with, but may be useful in some appli-
cations. It may be desirable, for example, to make the following
change to the grammar of the area code |ookup program:

"<digit> ::= OH 0| ZEROO | ONE:1 | TWO 2 |

THREE: 3 | FOUR 4 | FIVE:5 | SIX:6 | SEVEN 7 |
EIGHT: 8 | NINE: 9."

With this grammar, if the user said “two oh one”, the tags attached to
those digits could be used to concatenate the three numbers into the
number 201. If the user said “two zero one” or “two oh one”, the
number 201 would be returned.

LTS

Chapter 4: BNF Grammar

Making Rules Optional

The previous example showed that parts of a definition within a
grammar can be made conditional by using tag mapping. Rules of a
grammar can also be made optional. In BNF thisis achieved by
using the (|) indicator with the rule, similar to the way definitions
are approached. Consider agrammar for a simple window control
program without conditional rules:

"<command> ::= <action> <object>."
"<action> ::= OPEN | CLOSE | DELETE | MOVE."
"<object> ::= WNDOW | FILE | MENU."

This grammar allows the user to say commands such as “ open win-
dow,” “closefile,” or “move menu.” However, users may choose to
say “open afile” or “close the window.” Because “a’ and “the” are
not part of the grammar, these phrases are not recognized. It is possi-
ble to use tags to specify alternate phrases or even create many
alternate definitions for these rules. However, these are not elegant
or efficient solutions. Instead, the following grammar could be
created:

"<command> ::= <action> <object> | <action>
<article> <object>."

"<action> ::= OPEN | CLOSE | DELETE | MOVE."
"<article> ::= THE| A"

"<object> ::= WNDOW| FILE | MENU."

In the example above, the words “the” and “a’ definearule caled
<articl e>. Thisruleis part of adefinition for the <conmand>
rule, but the definition for <command> also alowsthe user to speak
without using “the” or “a.”

It'sagood ideato allow the user to perform speech commands using
normal conversational phrases. This could include phrases such as
“please.” Using optional rules allows users to be as polite as they
want to be. Consider this grammar:

"<request> ::= <verb> <possessi on> <noun>
<polite> <verb> <possessi on> <noun> | <verb>
<possessi on> <noun> <polite>."

"<verb> ::= GET | SEE | OPEN."
"<possession> ::= M."

"<polite> ::= PLEASE."

"<poun> ::= CONTACTS | SCHEDULE | CALENDAR."

Chapter 4: BNF Grammar

LTS

66

67

In this grammar, <r equest > can be recognized whether the user
says “Get my schedule,” “Please get my schedule,” or “ Get my
schedule please.”

Using Recursive Grammars

Recursive grammars allow the user to say consecutive lists of words
or items and have continuous recognition occur. For example, a user
could say a number of indefinite length such as an address or a cur-
rency amount:

"<digits> ::= <digit> <digits> | <digit>."
"<digit>::= ONE| TWO| THREE | FOUR | FIVE |
SIX| SEVEN| EIGHT | NNNE | ZERO | OH ZERO. "

In addition, using recursive grammars, it is possible for a user to
spell aword such as a stock symbol by speaking a word to represent
each letter. For example, the user could say “kilo oscar” to indicate
the symbol for the Coca-Cola Company, “KO.”

"<stock_synbol > ::= <letter><letters> | <letter>."
"<letters> ::= <letter><letters> | <letter>."
"<letter> ::= ALPHA: A | BRAVO B | CHARLI E: C |
"DELTA:D | ECHO E | FOXTROT:F | GOLF: G| HOTEL: H
| INDIA:l | JULIET:J | KILOK | LIMAL | MKE M

| NOVEMBER N | OSCAR O | PAPA:P | QUEBEC: Q |
ROVMEO.R| SIERRA:S | TANGO T | UNIFORM U |
VICTOR V | WH SKEY: W| X-RAY: X | YANKEE: Y |
ZULU: Z. "

Creating More Complex Grammars

Using optional rules and recursion it is possible to create complex
grammars. For example, consider agrammar for the Preamble to the
Constitution of the United States of America. The grammar could be
used to create a quiz program that prompts students to recite the
entire 52-word phrase by memory, phrase by phrase, starting with
the opening phrase. If desired, the quiz program could be designed to
distinguish between a part of a phrase that was correct and a phrase
that was almost correct, but not quite. It would also be possible for
the program to offer suggestions for each phrase that the student
missed. For example, if astudent said “in order to form a perfect
union,” the program could respond with “You are very close. Don't
give up now. Try again.” Or, the program could say “Try again, but

LTS

Chapter 4: BNF Grammar

thistime say ‘form a more perfect union’ instead of ‘form a perfect
union.” The program could continue in this fashion until the student
recited the entire Preamble.

The problem of composing agrammar that could be used for the quiz
program can be tackled in three steps. The first task isto assign each
part of the sentence a rule name; the name could be based on the
phrase’s part of speech, such as “subject” or “verb.” For each sen-
tence part, two rules are created: one with the label of _exact to
indicate the exact word or phrase, and another with the label

_al nost for very close answers. A complete set of these rules
would look like this:

"<subj ect _exact> ::= WE_THE_PEOCPLE."
"<subject_alnost> ::= WE | WE_PEOPLE."

"<subj _nodifier_exact> ::=
OF _THE UNI TED STATES OF AMERI CA. "

"<subj _nodifier_alnmost> ::= OFTHE U S A"
"<prep_phrase_exact> ::= IN_ ORDER TO "
"<prep_phrase_al nost> ::= SO THAT | SO WE_CAN."

"<prep_phrase_1 exact> ::=
FORM_ A MORE_PERFECT_UNI ON. "
"<prep_phrase 1 alnost> ::= FORM A PERFECT UNI ON. "

"<prep_phrase_2> ::= ESTABLI SH JUSTI CE. "

"<prep_phrase_3 exact> ::=

| NSURE_DOMESTI C_TRANQUI LI TY. "

"<prep_phrase_3 alnost> ::=

| NSURE_DOMESTI C_ HARMONY | | NSURE_TRANQUI LI TY. "

"<prep_phrase 4> .:=
PROVI DE_FOR_THE_COVMON_DEFENSE. "

"<prep_phrase_5> ::= PROVOTE_THE_GENERAL_WELFARE. "

"<prep_phrase_6a> ::=
SECURE_THE_BLESSI NGS_OF_LI| BERTY. "

"<prep_phrase_6b_exact> ::=
TO OURSELVES _AND OUR_POSTERI TY. "
"<prep_phrase_6b_al nost> ::=
TO_OUR_POSTERI TY_AND_ OURSELVES. "

"<verb_phrase_exact> ::= DO ORDAI N AND ESTABLI SH. "

COTTVETSEY
Chapter 4: BNF Grammar

69

"<verb_phrase_al nost> ::= DO ESTABLI SH AND ORDAI N
| ORDAI N_AND ESTABLI SH. "

"<pred_adj exact> ::= TH S."
"<pred_adj alnost> ::= THE. "
"<pred_obj> ::= CONSTI TUTI ON. "

"<pred_phrase_exact> ::=

FOR_THE_UNI TED STATES OF AMERI CA. "

"<pred_phrase alnost> ::= FOR THE U S A
FOR_THE_UNI TED STATES. "

The next step in defining the grammar would be to create additional
rules that can be used to ascertain if the student has said agiven
phrase closely, but not exactly. One way to do this would be to use
recursion to create additional rules such as these:

"<openi ng_phrase_exact> ::= <subject_exact >

<subj nodi fier_exact>."

"<openi ng_phrase_al nost> ::= <subj ect al nost>
<subj nodifier_al nost>."

"<subj ect _al nost> ::= <subject_exact>
<subj ect _al nost>."

"<subj _nodifier_al nost> ::= <subj_nodifier_exact>

| <subj _nodifier_al npbst>."

The above rules establish that several alternative phrasesto “We the
people of the United States of America’ will be recognized as almost
like the opening phrase of the Preamble. For example, “We the
people of the USA,” “We people of the USA,” and “ The people of
the United States of America’ are all defined as almost the opening
phrase. However, since any correct grammar for the opening phrase
consists in the subject followed by the subject modifier, nonsense
phrases will not be mistaken for close expressions. For example, if a
student said “ Of the United States of America, we the people’ this
would not be recognized.

After rules such as these have been established for each phrase in the
Preamble, the grammar could be completed by establishing rules for
what defines acompletely correct expression and what is considered
a close approximation. For example, the rules that complete the
grammar could look like these:

"<preanbl e_exact> ::= <subject_exact>
<subj nodi fier_exact> <prep_phrase_exact >
<prep_phrase_1 exact> <prep_phrase_2>
<prep_phrase_3_exact> <prep_phrase_4>

LT TS

Chapter 4: BNF Grammar

70

<prep_phrase_ 5> <prep_phrase_6a>
<prep_phrase_6b_exact > <verb_phrase_exact >
<pred_adj _exact> <pred_obj > <pred_phrase_exact>."

"<preanbl e_al nost> ::= <subject_al nost >
<subj nodifier_al nost> <prep_phrase_al nost >
<prep_phrase_1 al nost> <prep_phrase_ 2>
<prep_phrase_3_al nost> <prep_phrase_4>
<prep_phrase_5> <prep_phrase_6a>
<prep_phrase_6b_al nost > <verb_phrase_al nost >
<pred_adj al nost> <pred_obj >
<pred_phrase_al npst >. "

Tips for Forming Grammars

Thefollowing tips may be useful to keep in mind when forming
BNF grammars:

e A grammar may fail to work properly if any terminal ismis-
spelled, so use aspell check to find errors.

» Usestandard spelling for your grammar; don't try to spell words
phonetically.

* A grammar may fail to compile properly if aruleisundefined. If
the grammar doesn’t work as it was intended, check the BNF
syntax.

LT TS

Chapter 4: BNF Grammar

71

Example Grammars

Example grammars are a good place to observe best practices for
creating BNF grammars in applications created using the SDK.

This example demonstrates a complex grammar that is listening for
multiple commands.

"<command> ::= <schedul e> | <next>."
"<schedul e> ::= TODAYS | SCHEDULE |
TODAYS_SCHEDULE. "

"<next> ::= <adj > <subject> | <subject>."
"<adj > ::= JUST | JUST_M."

"<subject> ::= NEXT | NEXT_MEETING "

This example below demonstrates away to create arecursive
grammar that listens for noise by using the noise phone symbol ($).

"<any> ::= <noi se> <any> | <noise>."

"<noise> ::= $AA | $AE | $A0 | $AX | $AXR | $B |
$BD | $DD | $EH | SEY | $K | SL | $M| $IY | $N

| $R| $SH| $T | $TD| $V | $Z."

The example below demonstrates a complex grammar that is listen-
ing for multiple phrases and synonyms. It also references the above
rule for <any>, to account for noise that may interfere with the
speech recognition.

"<phrase> ::= <verb> <subject> | WHAT_CAN | _SAY."
"<verb> ::= <any> | <any> GET_MY | CGET_M."
"<subject> ::= <mmil> | <calendar> | <contacts>."
"<mail> ::= MAIL | EMAIL."

"<cal endar> ::= CALENDAR | SCHEDULE."

"<contacts> ::= CONTACTS | ADDRESS BOX. "

The above grammar could potentially even recognize a sentence pre-
ceded by a user who coughed before speaking.

The following example demonstrates a grammar that is listening for
an adjective and an optional noun.

"<emai |l > ::= <adj> | <adj> MAIL."
"<adj > ::= ALL | UNREAD | JUST_UNREAD."

The following examples demonstrate simple lists of things the user
can say.

"<cal endar _flow> ::= STOP | STOP_READI NG | NEXT |

LTS

Chapter 4: BNF Grammar

72

NEXT_MEETING | SKIP | GO _BACK. "

"<contact> ::= MARK ADAMS | LI NDA BAKER |

THOVAS _CHAVEZ | GEORGE_HILL | PATRI Cl A_ROBERTS |
MARY_RUI Z | STEPHANI E_SM TH | DAVI D_THOWPSON |
AMY_WANG | BRI AN_WH TE. "

"<contact flow> ::= ADDRESS | PHONE NUVBER | MAIL |
EMAIL | ALL_I NFORMATI ON |
ALL_CONTACT_| NFORMATI ON. "

<emai | _flow> ::= STOP | STOP_READI NG | NEXT |
NEXT_| TEM | NEXT_MESSAGE | SKIP | GO BACK."

Chapter 4: BNF Grammar

LT TS

Glossary

barge-in

The ability to interrupt audio output as aresult of recognition of a
user utterance. Barge-in is amode of the application and is only pos-
siblein afull-duplex system.

BNF (Backus-Naur Form)

A notation for describing the syntax of alanguage. The grammar
format that is recognized by CASSI™. For example, the notation for
agrammar rule called <f i | emenu> could be written like this:

<filemenu> ::= OPEN_FILE | CLOSE_FILE

CASSI (Conversay Advanced Symbolic Speech Interpreter)
The core speech recognizer and synthesizer used by Mobile

Conversay™ SDK.

CASSI Services
The API that interacts with CASSI. May be accessed through C or
C++.

class factory
An object that facilitates the creation of instances of the root object.

The class factory of the CASS| Services APl is
CVACr eat el nst ance.

context

A logical grouping of topics. For example, in a speech application
that provides accessto flight reservations, topics that are related to a
particular itinerary may be grouped into one context. Ticket price
and seat preferences would be two other contexts.

LTS

74

conversational focus

The context and topics that are active. Referred to as “in conversa-
tional focus.” Inactive topics are frequently referred to as “out of
conversational focus.”

duplex

A measure of an audio system'’s capability to handle sound input and
output. A full-duplex system is capable of simultaneous input and
output, allowing for barge-in or for recording and playing sound
simultaneously. A half-duplex system must alternate between input
and output.

embedded Linux®
The Linux-based platform for mobile devices, including PDAs and
hand-held computers.

grammar
A set of language rules that aids recognition accuracy and response
time in speech recognition systems by constraining what the speech
engine listens for. For example, agrammar may contain arule called
“filemenu” that recognizes only “open file” and “closefile.” BNF
(Backus-Naur Form) is the grammar format recognized by the
CASSI speech engine.

noise phones
Noises that do not coincide with the phoneme set of a language.

noise phone level
The rate at which the system recognizes noise phones, relative to
normal recognizable speech.

PDA (Personal Digital Assistant)

A small mobile hand-held device that provides computing capabili-
tiesfor personal or business use. PDAs aretypically used for keeping
address book and schedule information, in addition to meeting other
mobile computing needs.

phoneme set

The abstract units of alanguage's phonetic system. These units cor-
respond to aset of similar speech sounds, which are perceived to bea
single distinctive sound by human listeners.

LTS

Chapter 4: Glossary

75

Pocket PC
The Microsoft® Windows®-powered platform for PDAs and hand-
held computing.

prompt
In a speech application, an audible or visual cue that indicates that it
isthe user’sturn to speak.

reco (speech recognition)
The ability to take a voice waveform and match it to a specified
grammar.

ref-count (reference-count)

A count that tracks accessing and closing a topic in agrammar.
When atopic inagrammar is accessed or closed, its ref-count
number isincremented or decremented. Topics with a ref-count
number of O are deleted to free system resources.

STP (spelling-to-pronunciation)

A modulethat alows the CASSI speech engine to synthesize and
recogni ze speech without looking up the pronunciation in the speech
engine's dictionary module. Without STP rules, applications must
have al grammar items loaded in adictionary to allow the grammar
to be compiled.

threshold (or voice threshold)
An amplitude energy level that must be overcome before awaveform
will be sent to the recognition engine.

topic

Specification of the words that can be recognized by the speech
engine in aparticular context. For example, in a speech application
that provides banking services, topicsin the checking account
context could specify words that are related to transaction dates,
check numbers, payments, and deposits.

TTS (text-to-speech)

The synthesis of text into speech waveforms. The text-to-speech
capability of the CASSI speech engine includes text normalization
and prosody processing.

LTS

Chapter 4: Glossary

utterance
A single spoken event. May consist of asingle word or of several
words spoken continuously.

VUI (voice user interface)
A user interface that includes speech recognition, recorded speech
output, and synthetic speech output to communicate with the user.

WCIS (What Can | Say?)

A help service that informs the end user of the commands that the
system islistening for. For example, aWCI S response could be,
“You can say coffee, tea, milk, or no beverage.”

WYS (What You Said)
A help service that informs the end user of what the speech engine
has recognized as input.

Chapter 4: Glossary

LT TS

76

Index

A
Acrobat Reader 11
Activate 36
activating topics 36, 43
AddRef 31
Adobe Acrobat Reader 11
alphabet 67
ARM 21
ARMdbg 27
ARMrel 27
assistance for users 56
audio
conflicts between programs 30
instantiating 40
instantiating an output stream object 41
audio system, controlling 36
avoiding duplication 31

B

Backus-Naur Form 60, 73
about 61
example of 62, 63, 68, 71
interacting with CASS| 62
optional rules 66
recursive grammars 67
setting a grammar for atopic 42
substituting words in 65
tips 70

barge-in
definition of 73

basics 37

best practices 32

binary files 28

BNF 60, 73
about 61
example of 62, 63, 68, 71
grammar 10
interacting with CASS| 62
optional rules 66
recursive grammars 67
setting a grammar for atopic 42
substituting words in 65
tips 70

C
CAPI
developing in 13
sample application 13
C language 13
C++ language 13
Chee.stp 28
cSae.stp 16, 17, 22
C5ae08k.aqt 28
c5ae08k.agt 16, 17
C5ae08k.mod 28
c5ae08k.mod 16, 17, 22
C5aellk.spk 28
c5aellk.spk 16, 17, 22
c5aem08k.aqt 22
C5aemain.cdc 28
cS5aemain.pdc 16, 17, 23
C5cassi.dll 16, 22
calculator 29
callback
processing 36
processing, example of 44
setting 35
setting, example of 43
CASS 16, 73
interacting with BNF 62
CASS| Services 16
definition of 73
CASSI_HOME 17

LT TS

Index

causes of errors 55
characters 62
CHelloworldApp 38, 40, 44, 46
chip sets 21, 27
class constructor 39
class destructor 40
class resources, releasing 37
commands, listening for multiple 71
communicating status to the user 53
Compile 35
compiled HTML 12
compiling

speech application 26

topic 31

topic, example of 43
concatenation 62, 63, 65
conditional rules 66
confirming recognition 53
conflicts, audio resources 30
conseguences of errors 55
constructor 39
context 30

adding atopic to 42

adding to an SR object 34, 41

creating 33, 40

definition of 73

example of 33

instantiating 41

multiple contexts 36
continuous recognition 67
controlling the audio system 36

conversational flow, how to improve 52

conversational focus 30, 36, 74

Conversay Advanced Symbolic Speech Interpreter

73

Conversay Developer Network 18
Conversay documentation 18
cues 51

cues, visual 54

CVAApi.lib 27

CVAAudio.dll 16, 22
CVACreatel nstance 33, 34
CVAOBIJMACROS 13
CVAProxy.dil 16, 22
CVAPtr.h 26
CVAPwrMgmt.exe 16, 22
CVAServer.exe 16, 22
CVAServices.h 26, 38
cvaservices.h 13
CVATypes.h 26

D
datafiles 28
data type declarations 26
Deactivate 36
deactivating
topic 36
debug libraries
Pocket PC emulator 27
SH3 27
StrongARM 27
declarations, public data type 26
defining strings 38
definition end indicator 63
definition indicator 63
designing avoice user interface 10, 49, 50
destructor 40
digits, concatenating 65
documentation
formats 11
duplication, avoiding 31

E

Embedded Linux 74

environment variable 17

error handling 55
example of 46
providing examplesto users 56
providing explicit choices to users 56
providing visual cuesto users 57

LT TS

Index

errors
causes of 55
conseguences of 55
tips for handling 55

eventData 36

EventMsg 36

exit event 45

explicit feedback 53

explicit prompts 51

F

failures 55
causes of 55
conseguences of 55
tips for handling 55

features 9

feedback
in mixed modal systems 54
introduction to 53
tips 53

file paths 38

Financial App 29

focus 30, 36
hierarchy 30

format
compiled HTML 12
HTML 12
PDF 11

G
getting started 10

grammar
best practices 71
complex 67
creating 40
example of 45, 46, 63, 68
optional rules 66
recursive 67, 71
setting for atopic 42
spellingin 70
substituting words in 65
tagsin 65
tips 70

grammar, example of 45

H
hardware regquirements 21
header files 26
hello world 37
hellobye.wav 43
hellostart.wav 43
HelloWorld 29
hierarchy

conversational focus 30
hints 51
Hitachi 21
HTML 12

I

ICVAContext 30, 33, 34, 37
ICVASRInstance 30, 33, 34, 37
ICVATopic 30, 34, 35, 36
ICVATTSInstance 33

implicit feedback 53

implicit prompts 51

improving speech recognition 62
include files 26, 38

incremental prompts 52, 56
instantiating context 41
instantiating speech recognition 40
instantiating TTS 41

LT TS

Index

interface declarations 26
introduction 8, 9, 10, 37

L
latency 52
libraries 27
limiting words listened for 62
linking a speech application 26
Linux 21
listening
for lists 71
for multiple commands 71
for multiple phrases and synonyms 71
for optional words 71
for speech 33
lists, listening for 71
loan calculator 29

M
main function, example of 48
memory 21, 31
messages, repetitive 56
meta-symbols 62
military alphabet 67
minimizing user error 55
MIPS 21
mixed modal system 58
visual cues 57
multiple commands 71
multiple contexts 36
multiple phrases and synonyms 71
multiple topics 36
multithreaded application support 30

N
noise phone

noise phone symbol 71
noise tolerance 71
non-terminal 63
non-terminal symbols 62

@)

optimizing performance 31, 32
optimizing speech recognition 62
optional rules 66

optional words 71

or indicator 63

overview 10

P
path names 38
PDA 74
PDF 11
performance, optimizing 31
personal digital assistant 74
playing wave files 43
Pocket PC 75
Pocket PC emulator 21
debug libraries 27
release libraries 27
pointer 26
portability 38
portability.h 38
procedures, identifying 11
progressive assistance for users 56
prompts
choosing between explicit and implicit 51
incremental 52
introduction to 51
tapering 52
public data type declarations 26

R
RAM requirements 21
reco, definition of 75
recognition
continuous 67
example of 38
improving 62
recursive grammars 67, 71
ref-count, definition of 75

LT TS

Index

reference count 31, 75
Release 31, 37
release libraries

Pocket PC emulator 27

SH3 27

StrongARM 27
ReleaseResources 44
releasing resources 37, 44, 46
removing unnecessary words 52
repetitive messages 56
resource management 31
resources, releasing 37, 44, 46
rules 62

any 71

for grammars 64

if left undefined 70

optional 66
run-time files 28

S
sample application 37
saving time of expert users 52
saying lists of words 67
saying strings of numbers 67
SDK 75
SetEventCallback 35
SetGrammar 35
Setup.exe 22
SH3 21
debug libraries 27
release libraries 27
SH3dbg 27
SH3rel 27
smart pointers 26
software development kit 75
speech patterns, designing for 66
speech recognition 75
example 38
instantiating 40
speech recognition object 33

speech synthesis 33
spelling
in grammars 67, 70
spelling to pronunciation 75
SpPref.exe 16
SR 30
SR object 33
STDTypes.h 26, 38
step-by-step guide 32
STP 75
strings, defining 38
StrongARM 21
debug libraries 27
release libraries 27
substituting words 65
SuperH 21
synthesizing speech 33
system requirements
hardware 21
system resources
freeing 31
releasing 46

T

tag mapping 65

talking to the user 33

tapering prompts 52

tasks, identifying 11

technical support 18

terminal 63, 64
misspelled 70
terminal symbols 62

text 63

text feedback in GUI 54

text-to-speech 75
instantiating 40, 41
TTS object 33

threshold 75

tips for handling errors 55

LT TS

Index

topic 30, 75
activating 36, 43

adding to a context object 42

adding to context 34
compiling 31
creating 34, 40, 42
deactivating 36
example of topic object 34
multiple topics 36

TTS75
instantiating 40, 41
TTSaobject 33

U
uncompiled HTML 12
user error 55

V

verbal thinking 50, 58

visual cues 54, 57

voice threshold 75

voice user interface 76
principles of design 49
user's verbal approach 50

VUI 76
GUI considerations 58
principles of design 49
user's verbal approach 50

W
wavefile
playing 43
WCIS 76
well-behaved applications 32
What Can | Say 76
What You Said 76
WYS 76

X
X86EMdbg 27

X86EMrel 27

LT TS

	Introduction
	Features of Mobile Conversay SDK
	Overview
	Documentation Conventions
	Documentation Formats

	Developing in C
	Deploying on the Pocket PC Platform
	Deploying on the Embedded Linux Platform
	Other Resources

	Getting Started
	Supported Operating Systems
	Hardware Requirements
	Installing Mobile Conversay SDK on Windows
	Installing Mobile Conversay SDK on Linux
	Header Files
	Library Files
	Data Files
	Sample Applications
	Creating Well-Behaved Applications
	Conversational Focus Management
	Data Lifetime Control
	Steps to Creating Well-Behaved Applications
	Step 1. Creating a Speech Recognition Object
	Step 2. Creating a Text-to-Speech Object
	Step 3. Creating a Context Object
	Step 4. Creating a Topic Object
	Step 5. Setting and Compiling the Grammar
	Step 6. Setting the Callback Functions
	Step 7. Controlling the Focus
	Step 8. Processing Callback Events
	Step 9. Releasing the Class Resources

	Understanding the Basics: The Hello World Example
	Including the API Headers
	Defining Strings for OS Portability
	Defining the CHelloWorldApp Class
	Defining the Class Constructor
	Defining the Class Destructor
	Defining the CHelloWorldApp:: Run Method
	Creating the Speech Recognition Object
	Creating the Text- to-Speech Object
	Creating the Audio Output Object
	Creating a Context Object
	Adding the Context to the SR Object
	Creating a Topic Object
	Adding the Topic Object to the Context Object
	Setting a Grammar for the Topic
	Compiling the Topic
	Setting the Callback Function
	Activating the Topic
	Playing the .wav Files
	Calling the ReleaseResources() Function
	Defining the CHelloWorldApp:: Callback Method
	Recognizing the HELLO Grammar
	Recognizing the BYE Grammar
	Recognizing the HELP Grammar
	Defining CHelloWorldApp:: ReleaseResources
	Defining the Main Function

	Designing a Voice User Interface
	Designing For Speech
	Prompts
	Explicit and Implicit Prompts
	Tapering Prompts
	Incremental Prompts

	Feedback
	Tips for Providing Feedback

	Dealing with Failures and Errors
	Causes and Consequences of Failures and Errors
	Tips for Handling Failures and Errors

	Mixing VUIs and GUIs
	Latency

	BNF Grammar
	About Backus-Naur Form
	Using BNF Grammars with CASSI
	A Simple Grammar
	Using Tag Mapping
	Making Rules Optional
	Using Recursive Grammars
	Creating More Complex Grammars
	Tips for Forming Grammars

	Example Grammars

	Glossary

