
Mobile Conversay
Software Development

Kit

Getting Started

2

© 2001 Conversational Computing Corporation. All rights reserved.

Conversational Computing Corporation
15375 NE 90th Street
Redmond, WA 98052

Conversay is interested in feedback about the quality and effectiveness of this
document. Understanding your experiences and preferences will help us
provide you with the highest level of support. We encourage you to share your
valuable feedback with us via e-mail at
Documentation_Feedback@conversay.com.

Lead Writer: Joe Perez

Contributors: Rob Barrows and Bruce Weber

Editor: Nelson Abbey

Documentation Manager: Sarah Mollet Baranowski
Chapter : Mobile Conversay Software Development Kit

Table of Contents
Chapter 1: Introduction .. 8

Features of Mobile Conversay SDK ..9

Overview...10

Documentation Conventions ..10

Documentation Formats ...11

Developing in C..13

Deploying on the Pocket PC Platform ...16

Deploying on the Embedded Linux Platform ...17

Other Resources...18

Chapter 2: Getting Started.. 19

Supported Operating Systems..20

Hardware Requirements...21

Installing Mobile Conversay SDK on Windows ...22

Installing Mobile Conversay SDK on Linux...24

Table of Contents
Header Files ...26

Library Files...27

Data Files..28

Sample Applications..29

Creating Well-Behaved Applications...30

Conversational Focus Management ...30

Data Lifetime Control ..31

Steps to Creating Well-Behaved Applications ...32
Step 1. Creating a Speech Recognition Object ..33
Step 2. Creating a Text-to-Speech Object..33
Step 3. Creating a Context Object..33
Step 4. Creating a Topic Object ...34
Step 5. Setting and Compiling the Grammar ...35
Step 6. Setting the Callback Functions ..35
Step 7. Controlling the Focus...36
Step 8. Processing Callback Events ...36
Step 9. Releasing the Class Resources...37

Table of Contents
Understanding the Basics: The Hello World Example...37
Including the API Headers...38
Defining Strings for OS Portability ...38
Defining the CHelloWorldApp Class ..38
Defining the Class Constructor..39
Defining the Class Destructor..40
Defining the CHelloWorldApp:: Run Method...40
Creating the Speech Recognition Object ...40
Creating the Text-to-Speech Object...41
Creating the Audio Output Object ...41
Creating a Context Object..41
Adding the Context to the SR Object ..41
Creating a Topic Object ...42
Adding the Topic Object to the Context Object...42
Setting a Grammar for the Topic ...42
Compiling the Topic ..43
Setting the Callback Function..43
Activating the Topic...43
Playing the .wav Files ..43
Calling the ReleaseResources() Function ..44
Defining the CHelloWorldApp:: Callback Method ...44
Recognizing the HELLO Grammar ...45
Recognizing the BYE Grammar ..45
Recognizing the HELP Grammar ..46
Defining CHelloWorldApp:: ReleaseResources..46
Defining the Main Function...48

Table of Contents
Chapter 3: Designing a Voice User Interface.. 49

Designing For Speech ..50

Prompts ..51

Explicit and Implicit Prompts ..51

Tapering Prompts ...52

Incremental Prompts ..52

Feedback...53

Tips for Providing Feedback ..53

Dealing with Failures and Errors...55

Causes and Consequences of Failures and Errors ..55

Tips for Handling Failures and Errors..55

Mixing VUIs and GUIs ...58

Latency ...59

Chapter 4: BNF Grammar ... 60

About Backus-Naur Form ..61

Table of Contents
Using BNF Grammars with CASSI ...62

A Simple Grammar ..63

Using Tag Mapping ..65

Making Rules Optional ..66

Using Recursive Grammars ...67

Creating More Complex Grammars ...67

Tips for Forming Grammars...70

Example Grammars ..71

Chapter 5: Glossary .. 73

1 Introduction

Mobile Conversay™ Software Development Kit 1.02 is Conversay’s
voice platform for creating robust voice user interfaces on personal
digital assistants, phones, and other mobile devices.

In This Section

• Features of Mobile Conversay SDK

• Overview

• Documentation Conventions

• Documentation Formats

• Developing in C

• Deploying on the Pocket PC Platform

• Deploying on the Embedded Linux Platform

• Other Resources

9

Features of Mobile Conversay SDK

Using Mobile Conversay SDK, a mobile application developer can
create applications that perform the following tasks:

• Initialize and uninitialize multiple instances of speech recogni-
tion (SR) and text-to-speech (TTS) objects.

• Set callback events.

• Detect word, pause, speaking finished, and custom events.

• Recognize a specified grammar (U.S. English supported in this
release).

• Use spelling-to-pronunciation (STP) rules to enhance pronuncia-
tion and recognition accuracy.

• Generate custom grammars, including multiple topics and
contexts.

• Play a specified text string.

• Stop, fast forward, and rewind synthesized TTS output.

• Play .wav files on the audio output channel.

• Input .wav files for speech recognition.

• Detect the state of device microphone and speakers.

• Retrieve instances of user barge-in (only on full-duplex
devices).

• Retrieve detailed error and troubleshooting information.
Chapter 1: Introduction

10
Overview

“Introduction” provides an overview of the SDK’s features and
information about the documentation. You will also learn how to
access the API using the C language and how to distribute your
application on Pocket PC and embedded Linux devices.

“Getting Started” describes the system requirements and installation
procedures for integrating the Mobile Conversay SDK into your
development environment. Descriptions are provided for the API
header files, data files, sample applications, and libraries. You will
also learn how to program a simple application that listens for spe-
cific words and phrases and responds with text-to-speech synthesis.
The application also shows you how to play .wav files to provide
helpful user feedback and help.

“Designing a Voice User Interface” describes principles and
methods of designing voice user interfaces (VUIs) for speech recog-
nition and text-to-speech applications. You will learn about the
elements of a well-designed VUI and the differences between
implicit, explicit, tapering, and incremental prompts. Tips are pro-
vided to help you avoid common mistakes in VUI design.

“BNF Grammar” describes Backus-Naur Form, a standard notation
convention used to describe speech recognition grammars. Even if
you are already familiar with BNF notation, you can find useful
information such as a syntax reference and samples of common
notations.

Documentation Conventions
The font and style conventions used in this document make it easy to
identify items such as code to type, procedures, and cross-references
to related topics.

Bold indicates a user interface element.

Monospace font indicates code, file names, and directory paths.
Chapter 1: Introduction

11
Finding Procedures

Procedure headings begin with the word “To” so you can find them
quickly. Here is an example of a procedure:

To Find a Procedure

• Look for a heading that begins with the word “To.” Procedures
with more than one step are numbered. One-step procedures like
this one are marked with a bullet.

Finding Tips and Notes

Tips and notes appear with special formatting:

TIP: Tips provide recommendations that can help you
increase the effectiveness of your programming.

NOTE: Notes contain additional information about features
and techniques that are not part of a procedure.

Finding Cross-References to Related Topics

Cross-references to related sections of the SDK appear in the format
illustrated below:

See Also: “Documentation Formats,” page 11

Documentation Formats
This document is available in .pdf, .html, and .chm formats. The
.html and .chm help systems also include the contents of A Guide to
the CASSI Services API, a document available as a separate .pdf file.

To View the .pdf Documentation

1. If you do not have Adobe Acrobat Reader software installed on
your computer, download it from the Adobe Web site
(www.adobe.com).

2. Open one or both of these files:

a. MobileConversaySDK_GettingStarted.pdf
Chapter 1: Introduction

12
b. MobileConversaySDK_API.pdf

NOTE: Documentation is installed in the docs folder of the
Mobile Conversay SDK folder. On Microsoft®
Windows® systems, the default location is
C:\Program Files\Conversay\Mobile

Conversay SDK\docs\. On Linux systems, there
is no default location; however, a typical location is /
usr/local/share/Conversay/

MobileConversaySDK/docs/.

To View the .html Documentation

• Open the file MobileConversaySDK.html.

NOTE: Documentation is installed in the docs folder of the
Mobile Conversay SDK folder. On Windows
systems, the default location is C:\Program
Files\Conversay\Mobile Conversay

SDK\docs\. On Linux systems, there is no default
location; however, a typical location is /usr/
local/share/Conversay/

MobileConversaySDK/docs/.

To View the .chm Documentation

• Open the file MobileConversaySDK.chm.

NOTE: This help system is only available for Windows.
Computers with operating systems older than
Windows 2000 may require Microsoft Internet
Explorer 4.0 or later to view the help file.
Chapter 1: Introduction

13
Developing in C

You can use the C or C++ programming languages to develop
mobile applications with the Mobile Conversay SDK. This docu-
ment provides syntax and examples in C++; however, the API
supports C-style calls.

To program using C, it is necessary to use the CVAOBJMACROS. If
CVAOBJMACROS is undefined or does not exist, then code written in
C will not function. The cvaservices.h file, part of the standard
API, contains the macros needed to translate C-style code into the
corresponding C++ code.

An API call is presented below in three different ways. Then a full
sample further illustrates the C-style calls.

C++ Code
ICVAObjectPtr->AddRef();

C Code Using C Style
ICVAObject_lpVtbl->AddRef(ICVAObjectPtr);
* This call requires that *\

* CVAOBJMACROS has been defined. *\

C Code Using C++ Style
ICVAObjectPtr->lpVtbl->AddRef(ICVAObjectPtr);

Full Sample

The sample below illustrates how an application can be designed
using API calls in C. This sample shows conditional statements used
to determine if CVAOBJMACROS has been defined. If the macro is
defined, traditional C-style function calls are used; if the macro is not
defined, API calls map a C++ style to a C structure.

#include <windows.h>

#define CVAOBJMACROS
#include "include\cvaservices.h"

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nCmdShow)
Chapter 1: Introduction

14
{
ICVASRInstance *pSR;
ICVASRContext *pContext;
ICVATopic *pTopic;

// ***
// Creating instances of SR and context objects
// ***

CVACreateInstance(CLSID_CVASRInstance, NULL, 0,
IID_ICVASRInstance, &pSR);
CVACreateInstance(CLSID_CVAContext, NULL, 0,

IID_ICVAContext, &pContext);

// ***
// Adding a context to a SR object instance
// ***

#ifdef CVAOBJMACROS // If C macros defined...
ICVASRInstance_Add(pSR, pContext);

#else // otherwise...
pSR->lpVtbl->Add(pSR, pContext);

#endif

// Using class factory to create object instance
CVACreateInstance(CLSID_CVATopic, NULL, 0,

IID_ICVATopic, &pTopic);

// ***
// Adding a topic to a context
// ***

#ifdef CVAOBJMACROS // If C macros defined...
ICVAContext_Add(pContext, pTopic);

#else // otherwise...
pContext->lpVtbl->Add(pContext, pTopic);

#endif

// ***
// Setting a grammar, compiling & activating topic
// ***

#ifdef CVAOBJMACROS // If C macros defined...
ICVATopic_SetGrammar(pTopic, _T("<G> ::= ONE | TWO
| THREE | FOUR | FIVE | SIX | SEVEN | EIGHT | NINE
| ZERO | OH."), GRAM_FMT_BNF);
ICVATopic_Compile(pTopic);
Chapter 1: Introduction

15
ICVATopic_Activate(pTopic);

#else // otherwise...
pTopic->lpVtbl->SetGrammar(pTopic, _T("<G> ::=

ONE | TWO | THREE | FOUR | FIVE | SIX | SEVEN |
EIGHT | NINE | ZERO | OH."), GRAM_FMT_BNF);
pTopic->lpVtbl->Compile(pTopic);
pTopic->lpVtbl->Activate(pTopic);

#endif
}

Chapter 1: Introduction

16
Deploying on the Pocket PC Platform

On the Pocket PC platform, you can deploy custom applications as
well as the sample applications that are distributed with the SDK.
CASSI™ Services is the API for accessing the core speech engine.
The following files must be included in the system’s /windows/
directory for CASSI Services to function properly:

• CVAServer.exe

• CVAAudio.dll

• CVAProxy.dll

• CVAPwrMgmt.exe

CASSI, the core speech engine, performs speech recognition, syn-
thesis, and text-to-speech. The following files must be included in
the /windows/ directory for CASSI to function properly:

• C5cassi.dll

• c5ae08k.aqt

• c5ae08k.mod

• c5ae11k.spk

• c5ae.stp

• c5aemain.cdc

Additionally, the following file is required for the Mobile Conversay
environment:

• SpPref.exe
Chapter 1: Introduction

17
Deploying on the Embedded Linux Platform

On the embedded Linux® platform, you can deploy custom applica-
tions as well as the sample applications that are distributed with the
SDK. To install applications on an embedded Linux device, CASSI
dictionary and other files need to be transferred to the device. The
following files must be included in the /usr/local/share/
cassi directory or another directory specified in the CASSI_HOME
environment variable:

• c5ae08k.aqt

• c5ae08k.mod

• c5ae11k.spk

• c5ae.stp

• c5aemain.cdc
Chapter 1: Introduction

18
Other Resources

Conversay strives to provide complete reference manuals and how-to
guides, but occasional gaps occur. If you have trouble finding an
answer in this documentation, then try these additional resources:

Sending Feedback

You can help to eliminate gaps in Conversay documentation in
future releases. If you have suggestions or comments about this doc-
umentation, then we would like to hear from you. Please send your
feedback to Documentation_Feedback@conversay.com.

Technical Support

For access to technical support, refer to your technical support con-
tract with Conversay or a value-added reseller. If you do not have a
technical support contract, call 1-888-487-4373 to purchase one.

The Conversay Web Site

Visit http://www.conversay.com for information about Conversay
products, partners, and solutions.

The Conversay Developer Network

The Conversay Developer Network provides resources for develop-
ers who are creating and implementing Conversay-based speech
technology solutions. To learn more about the CDN, visit http://
cdn.conversay.com.
Chapter 1: Introduction

2 Getting Started

This section provides information on system requirements, installa-
tion, recognizing SDK files, and an introduction to programming
well-behaved speech applications.

In This Section

• Supported Operating Systems

• Hardware Requirements

• Installing Mobile Conversay SDK on Windows

• Header Files

• Library Files

• Data Files

• Sample Applications

• Creating Well-Behaved Applications

• Conversational Focus Management

• Data Lifetime Control

• Steps to Creating Well-Behaved Applications

• Understanding the Basics: The Hello World Example

20
Supported Operating Systems

The SDK supports the following operating systems for developing
your applications:

• Microsoft® Windows® 2000

• Linux® 2.4 kernel

The following embedded platforms and operating systems are sup-
ported for deploying applications:

• Pocket PC platform

• Embedded Linux 2.4 kernel
Chapter 2: Getting Started

21
Hardware Requirements

The Mobile Conversay™ SDK supports most hardware configura-
tions from all major Pocket PC devices equipped with microphones
and speakers. The following chip sets are supported:

• StrongARM® microprocessor designed by ARM Ltd.

• SH3 (SuperH™ microprocessor) from Hitachi

• MIPS designed by MIPS Technologies

• 32-bit x86 platforms (Pocket PC emulator)

The following hardware configurations are supported on Linux plat-
forms with microphones and speakers:

• StrongARM® microprocessor designed by ARM Ltd. (embed-
ded systems)

• 32-bit x86 platforms (Linux desktop systems)

The following RAM is required to deploy the SDK:

• 16 MB RAM (32 MB recommended)
Chapter 2: Getting Started

22
Installing Mobile Conversay SDK on Windows

To Install Mobile Conversay SDK on Windows 2000

1. Open Setup.exe. When you install from a CD-ROM, the
program starts automatically as soon as you insert the disc into
your CD-ROM player.

2. In the Welcome screen of the installation wizard, click Install.

3. Click Next.

4. Read the license agreement, select the I Accept option, and click
Next.

5. Enter your user name and organization, select an access option,
and click Next.

6. Select the Complete option, and click Next.

7. Click Next, click Install, and then click Finish.

NOTE: The default installation location is C:\Program
Files\Conversay\Mobile Conversay.

To Build the Sample Applications on the Emulator:

• Use the Pocket PC emulator’s Start Menu to launch the
application.

NOTE: The Mobile Conversay SDK automatically installs all
the needed files on the Pocket PC emulator.

To Install Sample Applications on Pocket PC Devices

• Copy the following files to the system’s /windows/ directory:

CVAServer.exe

CVAAudio.dll

CVAProxy.dll

CVAPwrMgmt.exe

C5cassi.dll

c5ae08k.aqt

c5ae08k.mod

c5ae11k.spk

c5ae.stp
Chapter 2: Getting Started

23
c5aemain.cdc

NOTE: Before building the samples, build the Portability
library to ensure that the application functions on any
supported operating system. To do this, open the
portability.vcp file in the samples/
Portability folder in Microsoft embedded Visual
Studio, and then run Build All. In the sample’s folder,
open the .vcp file in Microsoft embedded Visual
Studio and then run Build All.
Chapter 2: Getting Started

24
Installing Mobile Conversay SDK on Linux

To Install Mobile Conversay SDK on Linux

1. Change directories to the directory where you wish to install the
API (for example, cd /usr/local/share).

2. Verify that you have permission to write to the selected
directory.

3. Copy the distributed .tar file to the selected directory (for
example, cp /tmp/

CassiServicesLinuxBuild.tar.gz).

4. Extract the file from the compressed .tar file (for example, tar
xzvf CassiServicesLinuxBuild25.tar.gz).

Two top level directories and sub-level directories are created.
The top directories are CASSIServices and CASSI.

5. Before building anything, you must first set the environment
variables. The file CASSIServices/Examples/
unix_bld_tools/CASSIServEnv.sh contains examples
of the variables that need to be set. Modify this file to point to
the new location (for example, change BASEDIR to
BASEDIR=/usr/local/share).

6. To place the environment variables into your current shell, run .
CASSIServices/Examples/bin/X86./CassiTest.

NOTE: The PATH environment variable must contain the
path to the CASSIServices/bin/ and the
LD_LIBRARY_PATH must contain the path to
CASSIServices/lib/ for the platform you are
running (for example, export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH: /

usr/local/Convseray/CASSIServices/

X86) and PATH=$PATH:/usr/local/
Convseray/CASSIServices/X86).

To Build the Sample Applications on the Desktop:

1. cd CASSIServices/Examples/Portability

2. Type one of the following commands, depending on the chip set
version you want to build:

• make X86 (X86 version).
Chapter 2: Getting Started

25
• make Linupy (Linupy ARM).

NOTE: Only one platform can be built at a time and you must
do a “make clean” between builds.

To Install Sample Applications on Embedded Linux
Devices

1. Transfer the CASSI Dictionary and the other files in CASSI/
DataFiles onto the device.

NOTE: By default, the CASSIServices library looks for
the CASSI-related files in /usr/local/share/
cassi. If you choose another location, you must set
the CASSIHOME environment variable (e.g., export
CASSIHOME=/usr/local/Conversay/

CASSI/Datafiles).

2. Copy the files specific to the application onto the device’s usr/
local/bin directory using minicom or some other means.

NOTE: To run the Hello World sample, it is necessary to copy
the hellostart.wav and hellobye.wav files to the
device’s usr/local/bin directory. These files are
located in the Examples/HelloWorld directory.
Chapter 2: Getting Started

26
Header Files

The following header files are needed to compile and link a speech
application using the CASSI™ Services API.

Table 2-1 Header Files

File Name Description

CVAPtr.h Smart pointers for ICVA objects.

CVAServices.h Interface declarations for all objects.

CVATypes.h Public data type declarations for CASSI
Services.

STDTypes.h Additional type definitions.
Chapter 2: Getting Started

27
Library Files

The following libraries must be included to create a speech applica-
tion using the CASSI Services API. All of the .lib files have the same
name (CVAApi.lib), but they are located in different folders.

NOTE: Some of these file names are different for Linux
systems.

When you create a speech application using the CASSI Services
API, you must link to one of the library files provided in the Lib
folder of the SDK. Each library file is created for a specific platform.
The library file that you link to must correspond to the platform that
you are creating the application on.

Table 2-2 Library Folders

Folder Platform

ARMdbg Debug libraries for the StrongARM chip
set.

ARMrel Release libraries for the StrongARM chip
set.

SH3dbg Debug libraries for the SH3 chip set.

SH3rel Release libraries for the SH3 chip set.

X86EMdbg Debug libraries for the Pocket PC
emulator.

X86EMrel Release libraries for the Pocket PC
emulator.
Chapter 2: Getting Started

28
Data Files

Data files are provided in the bin directory and are used by CASSI
at run time. The table below lists and describes the data files that are
included with Mobile Conversay SDK:

NOTE: In the file names, “ae” denotes American English.

Table 2-3 Data Folder

File Description

C5ae.stp Spelling-to-pronunciation (STP) file.
Provides rules for postulating the
pronunciation of any words that are not
found in the dictionary or in auxiliary
lexicons.

C5ae08k.aqt Acoustic question table file. Required for
compiling topics, speech recognition, and
TTS.

C5ae08k.mod Acoustic model file. Compares incoming
speech to known acoustic segments.
Required for speech recognition.

C5ae11k.spk Speaker file. Gives acoustic values for
text-to-speech output.

C5aemain.cdc Dictionary file. Contains pronunciations
for many common words. Required for
compiling topics, speech recognition, and
TTS.
Chapter 2: Getting Started

29
Sample Applications

The table below lists and describes the sample applications that are
included with the SDK.

Table 2-4 Sample Applications

Name Description

FinancialApp A loan calculator program.

HelloWorld A program that recognizes the spoken
phrase “hello world” and responds with
text-to-speech synthesis and audio
output.
Chapter 2: Getting Started

30
Creating Well-Behaved Applications

CASSI Services supports running multiple multi-threaded applica-
tions simultaneously on a mobile device. CASSI Services is
designed to manage the system resources it uses and arbitrate
demands for access to the audio system. However, application
designers should still create well-behaved applications to avoid con-
flicts over audio resources and to avoid stretching other resources of
the device beyond tolerable limits.

A well-behaved application manages conversational focus and exer-
cises proper data lifetime control. In the topics that follow, you will
learn about these techniques and the process used to make well-
behaved applications. A complete application, “Hello World,” is
given as an example to illustrate basic procedures and good
techniques.

Conversational Focus Management
Conversational focus restricts speech recognition to designated ele-
ments within an application. While a speech application is running,
conversational focus shifts depending on the tasks that are being per-
formed. At any given time, some elements of the application will be
“in conversational focus” and some will be “out of conversational
focus.”

CASSI Services implements conversational focus management with
the ICVASRInstance, ICVAContext, and ICVATopic inter-
faces (or simply “SR,” “context,” and “topic” objects). The SR
object owns an object, or it can be the parent of one or more con-
texts. A context owns one or more topics. This hierarchical
relationship is called the “focus hierarchy.” See Figure 2-1 on
page 31.

An object is in focus if it is active and its parents are active. A topic
is in focus if its SR is active, and its parent SR and context object are
active. Likewise, a topic can be shifted “out of focus” by deactivat-
ing its context or SR instance or by deactivating its parent’s context
or SR instance. Note that when a parent is deactivated and subse-
quently re-activated, its children are restored to their prior state,
assuming that the children were not explicitly activated or deacti-
vated in the interim.
Chapter 2: Getting Started

31
Figure 2-1 Focus Hierarchy

Data Lifetime Control
A well-designed application optimizes performance and minimizes
the amount of system resources that are used. One way to optimize
performance is to eliminate unnecessary repetition of time-consum-
ing functions like topic compilation. You should also avoid
duplication of topics and grammars whenever possible. CASSI Ser-
vices is designed to minimize resource usage by monitoring all of the
API objects by a reference-count (or ref-count). When an object is no
longer needed, its ref-count is decremented by 1; when there are no
longer any users of an object, its ref-count reaches 0 and it is auto-
matically destroyed in order to free system resources.

To ensure that this mechanism functions properly, you must call the
Release method on an object's interface pointer when you are
done using it. Also, if you copy an interface pointer, it is essential
that you call AddRef on the pointer prior to doing anything else
with the original or the copy. For further information, see the
resource management rules of the COM documentation.

When an application starts, it typically attempts to create some API
objects. This attempt causes the CASSI Services server to load and
start running if it is not running already. When no applications are
using CASSI Services, the server is stopped and unloaded from
memory. Each time an application creates an API object, CASSI Ser-
vices checks available memory against the memory threshold and
returns an error if there is not sufficient memory.
Chapter 2: Getting Started

32
Steps to Creating Well-Behaved Applications
While every application is unique, certain steps are performed in a
particular order in a typical well-behaved application:

Step 1. Creating a Speech Recognition Object

Step 2. Creating a Text-to-Speech Object

Step 3. Creating a Context Object

• To Create a Context Object

• To Add the Context to the SR Object

Step 4. Creating a Topic Object

• To Create a Topic

• To Add the Topic to the Context

Step 5. Setting and Compiling the Grammar

• To Set a Grammar for the Topic

• To Compile the Topic

Step 6. Setting the Callback Functions

Step 7. Controlling the Focus

• To Gain Control of Focus

• To Relinquish Control of Focus

Step 8. Processing Callback Events

Step 9. Releasing the Class Resources

• To Release The SR Object

• To Release The TTS Object
Chapter 2: Getting Started

33
Step 1. Creating a
Speech Recognition
Object

A speech recognition (SR) object initiates the application to begin
listening to the user’s speech. The SR object is optional if your
program does not require speech recognition.

To Instantiate a Speech Recognition Object

• Call CVACreateInstance with the interface identifier for
the ICVASRInstance object.

Sample Code
CVACreateInstance(// Instantiates an SR object
CLSID_CVASRInstance, // Class ID
NULL, // NULL
0, // NULL
IID_ICVASRInstance, // Interface ID
(void**)&m_pSR // Pointer to object
);

Step 2. Creating a
Text-to-Speech
Object

Create a text-to-speech (TTS) object to enable the program to talk
back to the user. The TTS object is optional if your program does not
require text-to-speech synthesis.

To Instantiate a Text-to-Speech Object

• Call CVACreateInstance with the interface identifier for
the ICVATTSInstance object.

Sample Code
CVACreateInstance(// Instantiates TTS object
CLSID_CVATTSInstance, // Class ID
NULL, // NULL
0, // NULL
IID_ICVATTSInstance, // Interface ID
(void**)&m_pTTS // Pointer to object
);

Step 3. Creating a
Context Object

Create a context and add it to the SR object. At least one context is
required, but you may create multiple contexts if necessary.

To Create a Context Object

• Call CVACreateInstance with the interface identifier for
the ICVAContext object.
Chapter 2: Getting Started

34
Sample Code
CVACreateInstance(
CLSID_CVAContext, // Class ID
NULL, // NULL
0, // NULL
IID_ICVAContext, // Interface ID
(void**)&m_pContext // Pointer to object
);

To Add the Context to the SR Object

• Call the Add method of the ICVASRInstance object with the
ICVAContext object.

Sample Code
m_pSR->Add(m_pContext // m_pSR is pointer to
); // the SR object

Step 4. Creating a
Topic Object

Create a topic and add the topic to the context. At least one topic is
required for each context. However, you may have multiple topics in
each context.

To Create a Topic

• Call CVACreateInstance with the interface identifier for
the ICVATopic object.

Sample Code
CVACreateInstance(
CLSID_CVATopic, // Class identifier
NULL, // NULL
0, // NULL
IID_ICVATopic, // Interface identifier
(void**)&m_pTopic // Pointer to object
);

To Add the Topic to the Context

• Call the Add method of the ICVAContext object with the
ICVATopic object.

Sample Code
m_pContext->Add(m_pTopic // m_pContext is pointer
); // to the context object.
Chapter 2: Getting Started

35
Step 5. Setting and
Compiling the
Grammar

Define the grammar and compile it to enable the topics to be recog-
nized by the speech recognition engine. Use a text string in BNF
format to supply the grammar.

To Set a Grammar for the Topic

• Call the SetGrammar method of the ICVATopic object with
a text string.

Sample Code
m_pTopic->SetGrammar(
TEXT("<simplegrammar> ::= \

HELLO_WORLD:HELLO | HOWDY_WORLD:HELLO | \
HI_WORLD:HELLO | GOODBYE:BYE | \
HELP:HELP."), GRAM_FMT_BNF);

To Compile the Topic

• Call the Compile method of the ICVATopic object.

Sample Code
m_pTopic->Compile(// Compiles the grammar
);

Step 6. Setting the
Callback Functions

Set a callback function that is fired when a speech recognition event
occurs. If your application requires other events, such as knowing
when an utterance is finished, you need to set callback functions for
those events.

To Set a Callback for the Topic

• Call the SetEventCallback method of the ICVATopic
object.

NOTE: Use the SetEventCallback method of the
ICVASRInstance and ICVAContext objects to
set callback functions for objects other than topic
objects.

Sample Code
m_pTopic->SetEventCallback(
WORD_EVENT, // Event type
this, // Application data
Callback); // Pointer to callback function
Chapter 2: Getting Started

36
Step 7. Controlling
the Focus

The next step is to establish the conversational focus to gain control
of the device’s audio system. Focus control is required when you
have multiple contexts and topics. The contexts and topics must be
activated and deactivated under various conditions to control what
part of the program the user can interact with. Even in a very simple
application with a single context and topic, the topic must still be
activated and deactivated.

To Gain Control of Focus

• Call the Activate method of the ICVATopic object.

NOTE: The parent SR and context objects of the topic object
must also be active for the topic to be put in focus.

Sample Code
m_pTopic->Activate(// Puts topic in focus
);

To Relinquish Control of Focus

• Call the Deactivate method of the ICVATopic object.

NOTE: A topic can also be put out of focus by deactivating its
parent context or SR instance objects.

Sample Code
m_pTopic->Deactivate(// Puts topic out of focus
);

Step 8. Processing
Callback Events

The next step is to process your callback events. For example, you
can synthesize a text-to-speech response or play a .wav file.

To Process Callback Events

1. Use conditional statements that allow you to detect each
condition.

2. For each event you want to detect, call the eventData of the
EventMsg structure.

Sample Code
if
(!_tcscmp(pEventMsg->eventData.RecoWord.pszTag,
TEXT("HELLO")))
Chapter 2: Getting Started

37
{
// Say an acknowledgement
pThis->m_pTTS->Speak(
TEXT("HI, HOW ARE YOU TODAY?"), false);

}
else
if

(!_tcscmp(pEventMsg->eventData.RecoWord.pszTag,
TEXT("BYE")))

{
// Say an acknowledgement
pThis->m_pTTS->Speak(
TEXT("GOODBYE, HAVE A NICE DAY."), false);

}
break;

Step 9. Releasing
the Class Resources

When your application is completed, release the class resources for
any objects you have created.

To Release The SR Object

• Call the Release method of the ICVASRInstance object
with the ICVAContext object.

Sample Code
m_pSR->Release(); // Releases the SR object

To Release The TTS Object

• Call the Release method of the ICVASRInstance object
with the ICVAContext object.

Sample Code
m_pTTS->Release(); // Releases the TTS object

Understanding the Basics: The Hello World Example
The Hello World example is a complete application that demon-
strates the CASSI Services speech recognition, text-to-speech, and
audio streaming capabilities. The program plays a .wav file that
prompts the user to say “hello world” or “goodbye.” The program
listens for a response and offers a reply through text-to-speech syn-
Chapter 2: Getting Started

38
thesis. The program terminates when the user says “goodbye.” You
can find helloworld.cpp and the associated .wav files in the
samples folder of the Mobile Conversay SDK.

Including the API
Headers

This section of code includes the CASSI Services API files and a
library of functions that are portable abstractions of operating system
calls. These functions have names that begin with the word “Porta-
ble.” Code for these functions is in portability.h and
portability.cpp.

Sample Code
#include "STDTypes.h"
#include "CVAServices.h"
#include "portability.h"

Defining Strings for
OS Portability

This code defines strings that account for differences in the path-
naming conventions on various platforms supported by the CASSI
Services API.

Sample Code
#ifdef _WIN32
LPTSTR HelloStartFile =
TEXT("\\windows\\hellostart.wav");
LPTSTR HelloByeFile =
TEXT("\\windows\\hellobye.wav");
#endif
#ifdef unix
LPTSTR HelloStartFile =
TEXT("hellostart.wav");
LPTSTR HelloByeFile =
TEXT("hellobye.wav");
#endif

Defining the
CHelloWorldApp
Class

This code defines the class that implements simple speech
recognition.

Sample Code
class CHelloWorldApp
{

public:
// The constructor
CHelloWorldApp();
Chapter 2: Getting Started

39
// The destructor
~CHelloWorldApp();

// Start the app, return when it exits
CVAHRESULT Run();

private:
// Disable copy operator
CHelloWorldApp(const
CHelloWorldApp&);

// Disable assign operator
CHelloWorldApp& operator=(const
CHelloWorldApp&);

// Define the topic's callback
static void Callback(const EventMsg*,
void*, void*);

// Release all the class resources
CVAHRESULT ReleaseResources();

// An event, when set, causes app to exit
HANDLE m_exitEvent;

// Interface to speech reco object
ICVASRInstance* m_pSR;

// Interface to speech synthesis object
ICVATtsInstance* m_pTTS;

// Interface to a context object
ICVAContext* m_pContext;

// Interface to a topic object
ICVATopic* m_pTopic;

// Interface to audio output stream object
ICVAAudioOutStream* m_pOutStream;

};

Defining the Class
Constructor

This code defines a method that is used to construct the CHel-
loWorldApp class.

Sample Code
CHelloWorldApp::CHelloWorldApp()
:m_exitEvent(0), m_pSR(0), m_pTTS(0),
Chapter 2: Getting Started

40
m_pContext(0), m_pTopic(0), m_pOutStream(0)
{

}

Defining the Class
Destructor

This code defines a method that is used to destroy the CHel-
loWorldApp class.

Sample Code
CHelloWorldApp::~CHelloWorldApp()
{

}

Defining the
CHelloWorldApp::
Run Method

This code defines a method that is used to instantiate the speech rec-
ognition, text-to-speech, and audio objects. This method is also
responsible for creating the context, topic, and grammar.

Sample Code
CVAHRESULT CHelloWorldApp::Run()
{

CVAHRESULT res = CVAE_FAIL;
// Create event to wait until time to exit
m_exitEvent = PortableCreateEvent();
if (!m_exitEvent)

{
return CVAE_FAIL;

}

Creating the
Speech Recognition
Object

This code is part of the CHelloWorldApp::Run method. It
instantiates the speech recognition object.

Sample Code
// Instantiate an SR object, leave it active
res = CVACreateInstance(CLSID_CVASRInstance,
NULL, 0, IID_ICVASRInstance, (void**)&m_pSR);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Chapter 2: Getting Started

41
Creating the Text-
to-Speech Object

This code is part of the CHelloWorldApp::Run method. It
instantiates the text-to-speech object.

Sample Code
// Instantiate TTS object, leave it active
res = CVACreateInstance(CLSID_CVATTSInstance,
NULL, 0, IID_ICVATTSInstance, (void**)&m_pTTS);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Creating the Audio
Output Object

This code is the part of the CHelloWorldApp::Run method. It
instantiates the audio output stream object.

Sample Code
// Instantiate an audio output stream
// object, leave it active
res = CVACreateInstance(CLSID_CVAOutputStream,
NULL, 0, IID_ICVAOutputStream,
(void**)&m_pOutStream);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Creating a Context
Object

This code is the part of the CHelloWorldApp::Run method. It
instantiates the context object.

Sample Code
// Create a context, leave it active
res = CVACreateInstance(CLSID_CVAContext, NULL,
0, IID_ICVAContext, (void**)&m_pContext);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Adding the Context
to the SR Object

This section of code is the part of the CHelloWorldApp::Run
method. It adds the context object to the speech recognition object.
Chapter 2: Getting Started

42
// Add the context to the SR object
res = m_pSR->Add(m_pContext);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Creating a Topic
Object

This section of code is part of the CHelloWorldApp::Run
method. It creates a topic object.

// Create a topic, leave inactive for now
res = CVACreateInstance(CLSID_CVATopic, NULL,
0, IID_ICVATopic, (void**)&m_pTopic);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Adding the Topic
Object to the
Context Object

This code is the part of the CHelloWorldApp::Run method. It
adds the topic object to the context object.

// Add the topic to the context
res = m_pContext->Add(m_pTopic);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Setting a Grammar
for the Topic

This section of code is part of the CHelloWorldApp::Run
method. It sets the grammar for the topic object.

// Set a grammar for the topic using BNF
res = m_pTopic->SetGrammar(
TEXT("<simplegrammar> ::= \

HELLO_WORLD:HELLO | HOWDY_WORLD:HELLO | \
HI_WORLD:HELLO | GOODBYE:BYE | \
HELP:HELP."),GRAM_FMT_BNF);

if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Chapter 2: Getting Started

43
Compiling the
Topic

This code is the part of the CHelloWorldApp::Run method. It
compiles the grammar of the topic object.

// Compile the grammar
res = m_pTopic->Compile();
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Setting the
Callback Function

This code sets the callback function.

Sample Code
// Set a callback for the topic
res = m_pTopic->SetEventCallback(WORD_EVENT,
this, Callback);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Activating the
Topic

This code activates the topic.

Sample Code
// Activate the topic
res = m_pTopic->Activate();
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Playing the .wav
Files

This code plays the hellostart.wav and hellobye.wav
files.

Sample Code
// Play the "hellostart.wav" file
// This file contains the recording:
Chapter 2: Getting Started

44
// "You can say hello world or you can say
// Goodbye."
res = m_pOutStream->SubmitFile(
HelloStartFile, false);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

// Wait for the exit event
// When received,
// proceed with cleanup and return
PortableWaitOnEvent(m_exitEvent, INFINITE);

// Play the "hellobye.wav" file
// This file contains the recording:
// "Goodbye!"
res = m_pOutStream->SubmitFile(
HelloByeFile, false);
if (CVAFAILED(res))
{

ReleaseResources();
return res;

}

Calling the
ReleaseResources()
Function

This code calls the ReleaseResources() function.

Sample Code
// Release all resources used by the class
res = ReleaseResources();

return res;
}

Defining the
CHelloWorldApp::
Callback Method

This code processes the callback function. It is called when a word or
phrase in the topic's grammar is recognized. If the application recog-
nizes the HELLO, BYE, or HELP grammar, it responds appropriately.

Sample Code
void CHelloWorldApp::Callback(const EventMsg*
pEventMsg, void* pvUserData, void* pv)
{
// Get the 'this' pointer (static member
// functions do not have direct access to it)
CHelloWorldApp* pThis =
Chapter 2: Getting Started

45
(CHelloWorldApp*)pvUserData;

// Process according to the event type
switch(pEventMsg->eEventType)
{

case WORD_EVENT:

// Check the received word's tag
// and respond accordingly

Recognizing the
HELLO Grammar

This code is the case in the conditional statement that checks for the
HELLO grammar and responds.

Sample Code
if
(!_tcscmp(pEventMsg-

>eventData.RecoWord.pszTag,
TEXT("HELLO")))

{
// Say an acknowledgement
pThis->m_pTTS->Speak(
TEXT("You said hello world."), false);

}
else

Recognizing the
BYE Grammar

This code is the case in the conditional statement that checks for the
BYE grammar and returns an exit event.

Sample Code
if
(!_tcscmp(pEventMsg-

>eventData.RecoWord.pszTag,
TEXT("BYE")))

{
// Set the exit event
// This will cause
// run to unblock and return
PortableSignalEvent(pThis->m_exitEvent);

}
else
Chapter 2: Getting Started

46
Recognizing the
HELP Grammar

This code is the case in the conditional statement that checks for the
HELP grammar and responds. Because this is a sample program,
there is limited error handling. In an actual application, unexpected
events would be handled also.

Sample Code
if
(!_tcscmp(pEventMsg-

>eventData.RecoWord.pszTag,
TEXT("HELP")))

{
// Play the "hellostart.wav" file
// This file contains a recording:
// "You can say hello world, or you can
// say goodbye."
pThis->m_pOutStream->SubmitFile(
HelloStartFile, false);

}
else

{
// Unexpected phrase

}
break;
default:

// Unexpected event
break;
}

Defining
CHelloWorldApp::
ReleaseResources

This code releases the system resources used by the class.

Sample Code
CVAHRESULT CHelloWorldApp::ReleaseResources()
{

CVAHRESULT res = CVAOK;
CVAHRESULT returnVal = CVAOK;

// Remove the topic from the context
if (m_pTopic && m_pContext)
{

res = m_pContext->Remove(m_pTopic);
if (CVAFAILED(res))

{
returnVal = res;
}
}

Chapter 2: Getting Started

47
// Remove the context from the SR object
if (m_pContext && m_pSR)
{

res = m_pSR->Remove(m_pContext);
if (CVAFAILED(res))

{
returnVal = res;
}
}

// Release the topic
if (m_pTopic)
{

m_pTopic->Release();
m_pTopic = 0;

}

// Release the context
if (m_pContext)
{

m_pContext->Release();
m_pContext = 0;

}

// Release the audio output stream
if (m_pOutStream)
{

m_pOutStream->Release();
m_pOutStream = 0;

}

// Release the SR object
if (m_pSR)
{

m_pSR->Release();
m_pSR = 0;

}

// Release the TTS object
if (m_pTTS)
{

m_pTTS->Release();
m_pTTS = 0;

}

// Delete the event object
if (m_exitEvent)
{

PortableDeleteEvent(m_exitEvent);
Chapter 2: Getting Started

48
m_exitEvent = 0;
}

return returnVal;
}

Defining the Main
Function

This code is the program's main function. It instantiates the CHel-
loWorldApp class and starts it running by calling Run(). When
Run() returns, the program exits.

Sample Code
int __cdecl main(int argc, char *argv[])
{

CHelloWorldApp app;

CVAHRESULT res = app.Run();
// Won't return until commanded to do so
if (CVAFAILED(res))

{
return -1;

}

return 0;
}

Chapter 2: Getting Started

3 Designing a Voice
User Interface

This section provides an overview of the principles that you should
consider when incorporating a voice user interface (VUI) into a
graphical user interface (GUI).

In This Section

• Designing For Speech

• Prompts

• Explicit and Implicit Prompts

• Tapering Prompts

• Incremental Prompts

• Feedback

• Tips for Providing Feedback

• Dealing with Failures and Errors

• Causes and Consequences of Failures and Errors

• Tips for Handling Failures and Errors

• Mixing VUIs and GUIs

• Latency

50
Designing For Speech

To be effective, a voice user interface (VUI) must provide a compel-
ling benefit to your users. With that benefit in mind, design the
application with speech in mind from the onset. Even if you are
adding speech to an existing GUI, you should rethink the fundamen-
tal tasks from a conversational perspective.

Some tasks, easily represented in a GUI, may present challenges to
represent in a VUI environment. For example, in a calendar applica-
tion, finding exact dates is easy when the user can see a visual
representation of the calendar and click the correct date. In the VUI
environment, users think in relative terms. They may say things like
“a week from yesterday” or “next Tuesday.” Understanding a user’s
approach to a verbal task in relation to their approach to a visual task
is an important principle in VUI design.
Chapter 3: Designing a Voice User Interface

51
Prompts

Well-designed prompts are critical to the success of any VUI appli-
cation. Prompts serve two purposes:

• As a cue when it is the user’s turn to speak.

• As an indication of what may be spoken.

Because of this dual purpose, be careful to ensure that users can dis-
tinguish prompts from instructions or other non-interactive
components. In addition, follow these tips as you design your
prompts:

• Keep prompts short.

• Prompts should be preceded by instructions.

• Place important information immediately preceding the
expected user response.

Explicit and Implicit Prompts
Prompts fall into two general categories: explicit and implicit.
Explicit (also called directive) prompts indicate exactly what the user
should say. Implicit prompts are open-ended; they do not list possi-
ble responses.

Example of an Explicit Prompt

Explicit prompts are useful in constraining user responses.

Example of an Implicit Prompt

Implicit prompts are more conversational and can provide a natural
interaction for the user. However, implicit prompts allow more room
for user error.

System: Welcome to XYZ Brokerage. You can check an
account balance, get a stock quote, or buy a stock.
Say “check balance,” “get quote,” or “buy a stock.”

System: Welcome to XYZ Brokerage. What would you like
to do?
Chapter 3: Designing a Voice User Interface

52
Tapering Prompts

With tapering prompts you can make a repeated prompt shorter the
second or third time that it is given. By removing unnecessary words
or explicit directions, a more natural interchange is achieved.

Example of a Tapered Prompt

Incremental Prompts
Incremental prompts provide information to the user in small frag-
ments. Each prompt is followed by a pause to allow for the user’s
response. Incremental prompts can be a time saver for expert users.
However, they can be problematic for novice users and can lead to
collisions between the subsequent prompt and the user’s spoken
response.

Example of an Incremental Prompt

See Also: “Latency,” page 59

System: You have three new messages. The first is from
Mark Adams. Say “read message,” “skip message,”
or “delete message.”

You have two messages remaining. The next is
from Mary Ruiz.

System: Welcome to XYZ Brokerage. What would you like
to do?

(Pause.)

You can check an account balance, get a stock
quote, or buy a stock.

(Pause.)

Say “check balance,” “get quote,” or “buy a stock.”
Chapter 3: Designing a Voice User Interface

53
Feedback

Feedback is a system output designed to inform users of the results
of their actions. Feedback can be a visual cue, spoken in the form of
text-to-speech (TTS), an auditory tone, or a combination of these ele-
ments. Feedback should provide users with the following
information:

• Was their utterance heard?

• If heard, was the speech correctly interpreted?

• Is the system processing data or waiting for input?

Tips for Providing Feedback
Follow these tips when providing feedback to the user:

Implicitly Verify Commands That Present Data

Avoid literal feedback. Users get frustrated when a system con-
stantly repeats, “You said...” and then re-states the exact response
that it recognized. This is especially true if the system is wrong.
Instead, implicitly verify commands by incorporating the verifica-
tion into the next prompt. For example…

Explicitly Verify Commands That Destroy Data or Are
Irreversible

Be explicit when the cost of the action is high. For example…

System: Which stock would you like to purchase?

User: XYZ Data.

System: How many shares of XYZ Data would you like to
purchase?

System: Which contact would you like to delete?

User: Amy Wang.

System: To delete the contact for Amy Wang, say “yes” or
“no.”
Chapter 3: Designing a Voice User Interface

54
Provide a Transcription in Mixed Modal Systems

When combining VUI with GUI elements, provide a text transcrip-
tion of what the user said. While literal feedback can be annoying to
the user when provided via spoken system output, a text transcription
can let the user know that the utterance was recognized.

Provide Other Visual Cues in Mixed Modal Systems

Visual cues, such as VU meters or icons, provide the user with feed-
back about the system. When working in a mixed modal system, it is
best to provide visual cues about the system state whenever possible.
Chapter 3: Designing a Voice User Interface

55
Dealing with Failures and Errors

CASSI™ recognizes a high percentage of user input, but occasional
recognition failures and user errors do occur. It is up to the system
designer to create an interface that accounts for recognition failures
and minimizes the instances of user error.

Causes and Consequences of Failures and Errors
Common causes of failures and errors include the following:

• Hardware, such as microphone, turned off or not ready

• Background noise

• User spoke too soon

• Utterance not in grammar

• User paused too long during utterance

• Word is out of vocabulary

Failures and errors can have serious consequences in speech applica-
tions, breaking the user’s perception of a human conversational
model. While it is generally not a good idea to try to convince users
that they are interacting with an almost-human machine, it is impor-
tant to realize that users will frequently interact with the system as if
it were human. When users speak to the system, they expect the
system to respond.

Another consequence of a failure or error is that the user must ini-
tiate the correction. For example, if the user mispronounces a word
and the system fails to recognize it, then the user must take action to
correct the pronunciation.

Tips for Handling Failures and Errors
Follow these tips when handling system failures and user errors:
Chapter 3: Designing a Voice User Interface

56
Do Not Use Repetitive Messages

The third or fourth time that an error prompt is repeated, it may lead
to user frustration or anger, regardless of how politely the message is
phrased.

Provide Progressive Assistance

Instead of just rephrasing the error prompt, incrementally provide
more help to the user. For example…

See Also: “Incremental Prompts,” page 52

Provide a Model

One way of dealing with errors is to provide the user with a model.
For example…

Provide Explicit Choices

Re-prompting with explicit choices can orient a user. For example…

Prompt 1: Say again.

Prompt 2: Sorry. Please rephrase.

Prompt 3: Still no luck. Please speak clearly, but do not
overemphasize.

System: On what date would you like to make the new
appointment?

User: A week from tomorrow.

System: I’m sorry. I don’t understand. Say the date of the
appointment. For example, say “April 23, 2001.”

System: Would you like to edit this contact?

User: I want the phone number.

System: I don’t understand. Would you like to edit this con-
tact? Say “yes” or “no.”
Chapter 3: Designing a Voice User Interface

57
Use Visual Cues if Available

Sometimes errors can be missed by the user. When designing for a
mixed modal system, use visual cues to help the user recognize the
occurrence of an error.
Chapter 3: Designing a Voice User Interface

58
Mixing VUIs and GUIs

In general, the issues involved in designing prompts for mixed modal
systems are the same as they are in VUI-only systems. Most impor-
tantly in mixed modal systems, you should keep in mind the ways
that the user will access the interface.

For example, while some devices, such as cell phones, may be
equipped with visual displays, you may be better off thinking in
terms of voice only as you design such a VUI. When users interact
with the voice interface of a cell phone, they may not be able to see
the GUI. However, users of PDA devices may refer to the screen
frequently.

If the screen is visible while the user speaks, then a GUI can be
useful in providing feedback to the user. For example, a GUI can
display a transcription of what the user has spoken, letting the user
know if the system has recognized the command. GUIs can also
provide a visual indication of the state of the system, such as whether
or not the system is listening or processing an utterance.
Chapter 3: Designing a Voice User Interface

59
Latency

In a VUI, pauses convey meaning to the user that you may not
intend. System pauses that are inherent in the design of the system,
often referred to as latency, can lead to misinterpretation by the user.
For example, latency may be interpreted as a cue to speak. If your
device is prone to system delays, then make sure to take these delays
into account when designing your prompts.
Chapter 3: Designing a Voice User Interface

4 BNF Grammar

This section of the documentation defines the grammar format,
Backus-Naur Form (BNF), which is recognized by the Conversay™
speech engine.

In This Section

• About Backus-Naur Form

• Using BNF Grammars with CASSI

• A Simple Grammar

• Using Tag Mapping

• Making Rules Optional

• Using Recursive Grammars

• Creating More Complex Grammars

• Tips for Forming Grammars

• Example Grammars

61
About Backus-Naur Form

BNF was originally created to describe the syntax of the Algol 60
programming language. The convention was later modified and now
describes the syntax of many languages. Easily learned and unam-
biguous, BNF defines a grammar with mathematical precision and is
a broadly accepted standard. CASSI™, the speech engine of the
Mobile Conversay API, also uses BNF.
Chapter 4: BNF Grammar

62
Using BNF Grammars with CASSI

Grammars define the rules that a language must obey to be inter-
preted correctly. Speech recognition systems use grammars for an
important reason: grammars allow the systems to achieve reasonable
recognition accuracy and response time by constraining what the
speech engine listens for. For example, a simple window control
grammar may include phrases such as “open file,” “close window,”
and “expand window.” The speech engine listens only for commands
that make sense in the context of the window control grammar.

BNF uses a set of rules for terminal and non-terminal symbols. Ter-
minal symbols, or characters, are words or phrases that the speech
recognition system is listening for. Non-terminal symbols are brack-
eted by the < and > meta-symbols. Non-terminals are also called
rules. Each rule in the grammar must have a corresponding terminal
or another rule.

In a spreadsheet program, the grammar may include phrases like
“new spreadsheet,” “open file,” “close file,” “save file,” “exit,” and
“help.” In BNF format, this grammar is represented with this text
string:

"<mainmenu> ::= NEW_SPREADSHEET | OPEN_FILE | \
CLOSE_FILE | SAVE_FILE | EXIT | HELP."

The definition follows the definition indicator (::=) and states that
<mainmenu> is defined as “new spreadsheet,” “open file,” “close
file,” “save file,” “exit,” and “help.” If <mainmenu> is the
grammar listened for at the spreadsheet’s main menu interface, then
the speech engine can listen for any of these phrases when the user
visits the spreadsheet’s main menu. The definition indicator is a BNF
meta-symbol that may be read as either “consists of” or “defined as.”
The indicator always has a definition on its right-hand side.

In the example above, the | meta-symbol (read as “or”) separates
different possible alternatives in a definition. The speech recognition
engine will listen for any of the options separated by the | meta-
symbol.

The . meta-symbol is used to indicate the end of a definition. You
can include more than one definition in a text string by using the .
meta-symbol to separate them.
Chapter 4: BNF Grammar

63
The _ meta-symbol concatenates words in a phrase. For example,
you may want the speech recognition engine to return “save file”
rather than “save” and “file.”

NOTE: In C and C++ programs, BNF grammars are passed to
the CASSI speech engine through text strings.
Therefore, make sure to treat the BNF grammar as a
text string by surrounding it with quotation marks
("") and concatenating more than one line with the \
character.

A Simple Grammar
Suppose we want to create a grammar that defines the syntax needed
to look up the telephone area code of a city. The grammar could be
part of a program that allows users to say an area code and get infor-
mation about the place. To construct the BNF grammar, words and

Table 4-1 The Elements of BNF

Element Appearance Description

Terminal text Any character or character
sequence that occurs in a text
string and is a word or
phrase that the speech
recognition system is
listening for.

Non-Terminal <rule> Any word in angle brackets.
Must be defined somewhere
within the string. In a speech
grammar, the word in angle
brackets is also called a rule.

Definition
Indicator

::= Used to define a terminal or
non-terminal, which resides
on the left side. The terminal
or non-terminal on the right
side is the definition.

Or Indicator | Separates alternatives in a
definition.

Definition End
Indicator

. Indicates the end of a
definition.
Chapter 4: BNF Grammar

64
phrases that users might say to find specific area codes are listed. For
example, “area code,” “show me the area code,” and “where is the
area code?”

To express a permissible sequence of words, the words are listed in
the text string and separated by an underscore. The word pair
AREA_CODE allows the phrase “area code” to be recognized, but not
“code area.” These two words are terminals in BNF grammar, so
they stand alone without further explanation. Terminals allow for
any number of words in a sequence, such as
WHERE_IS_AREA_CODE.

People typically use variations of phrases, depending on the individ-
ual person or context. To allow more than one word sequence, the
grammar uses the or (|) indicator, like this:

"AREA_CODE | WHERE_IS_AREA_CODE | \
LOOK_UP_AREA_CODE."

The or indicator allows the program to recognize any of the three
phrases. It is necessary in BNF notation to label such combinations
of words and alternatives with a rule that describes how the user can
use the phrases. This allows the program to refer to the alternatives
many times in shorthand by a specified name. For instance, we could
name the group of alternatives start_phrase:

"<start_phrase> ::= AREA_CODE | \
WHERE_IS_AREA_CODE | LOOK_UP_AREA_CODE."

NOTE: The definition indicator separates the defined word
and is terminated with a . meta-symbol.

A grammar can consist of more than one rule. For example, the
grammar that looks up the area code could continue like this:

"<area_code> ::= <digit> <digit> <digit>."
"<digit> ::= OH | ZERO | ONE | TWO | THREE | \
FOUR | FIVE | SIX | SEVEN | EIGHT | NINE."

This simple grammar includes a rule, <area_code>, that is com-
prised of other rules. This rule structure ensures that only area codes
comprised of three digits will be recognized.
Chapter 4: BNF Grammar

65
Using Tag Mapping
Recall the previous example that showed phrases in the main menu
of a spreadsheet program, such as “open file” and “exit.” While this
gives users a way of performing tasks based on a certain phrase, you
should design with the knowledge that users will use many different
words or different phrases to perform a task. For example, a user
might say “quit.” Since “quit” is not part of the grammar, the speech
engine cannot recognize the word. Fortunately, this is an easy
problem to avoid. It is possible to use a tag within the grammar to
map more than one word to the same tag. The tag is placed to the
right of the word and a (:) in the definition, like this:

"<mainmenu> ::= NEW_SPREADSHEET | OPEN_FILE |
CLOSE_FILE | SAVE_FILE | EXIT:EXIT | QUIT:EXIT |
HELP."

In the example above, the words “exit” and “quit” both have a tag of
EXIT. It is possible to map any number of words or phrases to the
same tag. Using multiple tag mapping relieves some of the burden of
accuracy from the user. The grammar shown below offers more flex-
ibility because of the multiple tag mapping:

"<hello_or_bye> ::= HELLO:HELLO | HOWDY:HELLO |
HI:HELLO | GOODBYE:BYE | BYE:BYE."

The sample code includes a tag on each side of the
<hello_or_bye> terminals. In this example, the tags allow the
grammar to understand “hello,” “howdy,” and “hi,” as different ways
of saying “hello.” Similarly, it recognizes “goodbye” and “bye,” as
equivalent to “bye.”

Tags also allow the grammar to concatenate spoken digits into a
single number, making the underlying processing more efficient.
This is not a requirement because CASSI recognizes single digits by
the words they are associated with, but may be useful in some appli-
cations. It may be desirable, for example, to make the following
change to the grammar of the area code lookup program:

"<digit> ::= OH:0 | ZERO:0 | ONE:1 | TWO:2 |
THREE:3 | FOUR:4 | FIVE:5 | SIX:6 | SEVEN:7 |
EIGHT:8 | NINE:9."

With this grammar, if the user said “two oh one”, the tags attached to
those digits could be used to concatenate the three numbers into the
number 201. If the user said “two zero one” or “two oh one”, the
number 201 would be returned.
Chapter 4: BNF Grammar

66
Making Rules Optional
The previous example showed that parts of a definition within a
grammar can be made conditional by using tag mapping. Rules of a
grammar can also be made optional. In BNF this is achieved by
using the (|) indicator with the rule, similar to the way definitions
are approached. Consider a grammar for a simple window control
program without conditional rules:

"<command> ::= <action> <object>."
"<action> ::= OPEN | CLOSE | DELETE | MOVE."
"<object> ::= WINDOW | FILE | MENU."

This grammar allows the user to say commands such as “open win-
dow,” “close file,” or “move menu.” However, users may choose to
say “open a file,” or “close the window.” Because “a” and “the” are
not part of the grammar, these phrases are not recognized. It is possi-
ble to use tags to specify alternate phrases or even create many
alternate definitions for these rules. However, these are not elegant
or efficient solutions. Instead, the following grammar could be
created:

"<command> ::= <action> <object> | <action>
<article> <object>."
"<action> ::= OPEN | CLOSE | DELETE | MOVE."
"<article> ::= THE | A."
"<object> ::= WINDOW | FILE | MENU."

In the example above, the words “the” and “a” define a rule called
<article>. This rule is part of a definition for the <command>
rule, but the definition for <command> also allows the user to speak
without using “the” or “a.”

It’s a good idea to allow the user to perform speech commands using
normal conversational phrases. This could include phrases such as
“please.” Using optional rules allows users to be as polite as they
want to be. Consider this grammar:

"<request> ::= <verb> <possession> <noun> |
<polite> <verb> <possession> <noun> | <verb>
<possession> <noun> <polite>."
"<verb> ::= GET | SEE | OPEN."
"<possession> ::= MY."
"<polite> ::= PLEASE."
"<noun> ::= CONTACTS | SCHEDULE | CALENDAR."
Chapter 4: BNF Grammar

67
In this grammar, <request> can be recognized whether the user
says “Get my schedule,” “Please get my schedule,” or “Get my
schedule please.”

Using Recursive Grammars
Recursive grammars allow the user to say consecutive lists of words
or items and have continuous recognition occur. For example, a user
could say a number of indefinite length such as an address or a cur-
rency amount:

"<digits> ::= <digit> <digits> | <digit>."
"<digit> ::= ONE | TWO | THREE | FOUR | FIVE |
SIX | SEVEN | EIGHT | NINE | ZERO | OH:ZERO."

In addition, using recursive grammars, it is possible for a user to
spell a word such as a stock symbol by speaking a word to represent
each letter. For example, the user could say “kilo oscar” to indicate
the symbol for the Coca-Cola Company, “KO.”

"<stock_symbol> ::= <letter><letters> | <letter>."
"<letters> ::= <letter><letters> | <letter>."
"<letter> ::= ALPHA:A |BRAVO:B | CHARLIE:C |
"DELTA:D | ECHO:E | FOXTROT:F | GOLF:G | HOTEL:H
| INDIA:I | JULIET:J | KILO:K | LIMA:L | MIKE:M
| NOVEMBER:N | OSCAR:O | PAPA:P | QUEBEC:Q |
ROMEO:R | SIERRA:S | TANGO:T | UNIFORM:U |
VICTOR:V | WHISKEY:W | X-RAY:X | YANKEE:Y |
ZULU:Z."

Creating More Complex Grammars
Using optional rules and recursion it is possible to create complex
grammars. For example, consider a grammar for the Preamble to the
Constitution of the United States of America. The grammar could be
used to create a quiz program that prompts students to recite the
entire 52-word phrase by memory, phrase by phrase, starting with
the opening phrase. If desired, the quiz program could be designed to
distinguish between a part of a phrase that was correct and a phrase
that was almost correct, but not quite. It would also be possible for
the program to offer suggestions for each phrase that the student
missed. For example, if a student said “in order to form a perfect
union,” the program could respond with “You are very close. Don’t
give up now. Try again.” Or, the program could say “Try again, but
Chapter 4: BNF Grammar

68
this time say ‘form a more perfect union’ instead of ‘form a perfect
union.” The program could continue in this fashion until the student
recited the entire Preamble.

The problem of composing a grammar that could be used for the quiz
program can be tackled in three steps. The first task is to assign each
part of the sentence a rule name; the name could be based on the
phrase’s part of speech, such as “subject” or “verb.” For each sen-
tence part, two rules are created: one with the label of _exact to
indicate the exact word or phrase, and another with the label
_almost for very close answers. A complete set of these rules
would look like this:

"<subject_exact> ::= WE_THE_PEOPLE."
"<subject_almost> ::= WE | WE_PEOPLE."

"<subj_modifier_exact> ::=
OF_THE_UNITED_STATES_OF_AMERICA."
"<subj_modifier_almost> ::= OF_THE_U_S_A."

"<prep_phrase_exact> ::= IN_ORDER_TO."
"<prep_phrase_almost> ::= SO_THAT | SO_WE_CAN."

"<prep_phrase_1_exact> ::=
FORM_A_MORE_PERFECT_UNION."
"<prep_phrase_1_almost> ::= FORM_A_PERFECT_UNION."

"<prep_phrase_2> ::= ESTABLISH_JUSTICE."

"<prep_phrase_3_exact> ::=
INSURE_DOMESTIC_TRANQUILITY."
"<prep_phrase_3_almost> ::=
INSURE_DOMESTIC_HARMONY | INSURE_TRANQUILITY."

"<prep_phrase_4> ::=
PROVIDE_FOR_THE_COMMON_DEFENSE."

"<prep_phrase_5> ::= PROMOTE_THE_GENERAL_WELFARE."

"<prep_phrase_6a> ::=
SECURE_THE_BLESSINGS_OF_LIBERTY."

"<prep_phrase_6b_exact> ::=
TO_OURSELVES_AND_OUR_POSTERITY."
"<prep_phrase_6b_almost> ::=
TO_OUR_POSTERITY_AND_OURSELVES."

"<verb_phrase_exact> ::= DO_ORDAIN_AND_ESTABLISH."
Chapter 4: BNF Grammar

69
"<verb_phrase_almost> ::= DO_ESTABLISH_AND_ORDAIN
| ORDAIN_AND_ESTABLISH."

"<pred_adj_exact> ::= THIS."
"<pred_adj_almost> ::= THE."

"<pred_obj> ::= CONSTITUTION."

"<pred_phrase_exact> ::=
FOR_THE_UNITED_STATES_OF_AMERICA."
"<pred_phrase_almost> ::= FOR_THE_U_S_A |
FOR_THE_UNITED_STATES."

The next step in defining the grammar would be to create additional
rules that can be used to ascertain if the student has said a given
phrase closely, but not exactly. One way to do this would be to use
recursion to create additional rules such as these:

"<opening_phrase_exact> ::= <subject_exact>
<subj_modifier_exact>."
"<opening_phrase_almost> ::= <subject_almost>
<subj_modifier_almost>."
"<subject_almost> ::= <subject_exact> |
<subject_almost>."
"<subj_modifier_almost> ::= <subj_modifier_exact>
| <subj_modifier_almost>."

The above rules establish that several alternative phrases to “We the
people of the United States of America” will be recognized as almost
like the opening phrase of the Preamble. For example, “We the
people of the USA,” “We people of the USA,” and “The people of
the United States of America” are all defined as almost the opening
phrase. However, since any correct grammar for the opening phrase
consists in the subject followed by the subject modifier, nonsense
phrases will not be mistaken for close expressions. For example, if a
student said “Of the United States of America, we the people” this
would not be recognized.

After rules such as these have been established for each phrase in the
Preamble, the grammar could be completed by establishing rules for
what defines a completely correct expression and what is considered
a close approximation. For example, the rules that complete the
grammar could look like these:

"<preamble_exact> ::= <subject_exact>
<subj_modifier_exact> <prep_phrase_exact>
<prep_phrase_1_exact> <prep_phrase_2>
<prep_phrase_3_exact> <prep_phrase_4>
Chapter 4: BNF Grammar

70
<prep_phrase_5> <prep_phrase_6a>
<prep_phrase_6b_exact> <verb_phrase_exact>
<pred_adj_exact> <pred_obj> <pred_phrase_exact>."

"<preamble_almost> ::= <subject_almost>
<subj_modifier_almost> <prep_phrase_almost>
<prep_phrase_1_almost> <prep_phrase_2>
<prep_phrase_3_almost> <prep_phrase_4>
<prep_phrase_5> <prep_phrase_6a>
<prep_phrase_6b_almost> <verb_phrase_almost>
<pred_adj_almost> <pred_obj>
<pred_phrase_almost>."

Tips for Forming Grammars
The following tips may be useful to keep in mind when forming
BNF grammars:

• A grammar may fail to work properly if any terminal is mis-
spelled, so use a spell check to find errors.

• Use standard spelling for your grammar; don’t try to spell words
phonetically.

• A grammar may fail to compile properly if a rule is undefined. If
the grammar doesn’t work as it was intended, check the BNF
syntax.
Chapter 4: BNF Grammar

71
Example Grammars

Example grammars are a good place to observe best practices for
creating BNF grammars in applications created using the SDK.

This example demonstrates a complex grammar that is listening for
multiple commands.

"<command> ::= <schedule> | <next>."
"<schedule> ::= TODAYS | SCHEDULE |
TODAYS_SCHEDULE."
"<next> ::= <adj> <subject> | <subject>."
"<adj> ::= JUST | JUST_MY."
"<subject> ::= NEXT | NEXT_MEETING."

This example below demonstrates a way to create a recursive
grammar that listens for noise by using the noise phone symbol ($).

"<any> ::= <noise> <any> | <noise>."
"<noise> ::= $AA | $AE | $AO | $AX | $AXR | $B |
$BD | $DD | $EH | $EY | $K | $L | $M | $IY | $N
| $R | $SH | $T | $TD | $V | $Z."

The example below demonstrates a complex grammar that is listen-
ing for multiple phrases and synonyms. It also references the above
rule for <any>, to account for noise that may interfere with the
speech recognition.

"<phrase> ::= <verb> <subject> | WHAT_CAN_I_SAY."
"<verb> ::= <any> | <any> GET_MY | GET_MY."
"<subject> ::= <mail> | <calendar> | <contacts>."
"<mail> ::= MAIL | EMAIL."
"<calendar> ::= CALENDAR | SCHEDULE."
"<contacts> ::= CONTACTS | ADDRESS_BOOK."

The above grammar could potentially even recognize a sentence pre-
ceded by a user who coughed before speaking.

The following example demonstrates a grammar that is listening for
an adjective and an optional noun.

"<email> ::= <adj> | <adj> MAIL."
"<adj> ::= ALL | UNREAD | JUST_UNREAD."

The following examples demonstrate simple lists of things the user
can say.

"<calendar_flow> ::= STOP | STOP_READING | NEXT |
Chapter 4: BNF Grammar

72
NEXT_MEETING | SKIP | GO_BACK."
"<contact> ::= MARK_ADAMS | LINDA_BAKER |
THOMAS_CHAVEZ | GEORGE_HILL | PATRICIA_ROBERTS |
MARY_RUIZ | STEPHANIE_SMITH | DAVID_THOMPSON |
AMY_WANG | BRIAN_WHITE."

"<contact_flow> ::= ADDRESS | PHONE_NUMBER | MAIL |
EMAIL | ALL_INFORMATION |
ALL_CONTACT_INFORMATION."

<email_flow> ::= STOP | STOP_READING | NEXT |
NEXT_ITEM | NEXT_MESSAGE | SKIP | GO_BACK."
Chapter 4: BNF Grammar

4 Glossary

barge-in
The ability to interrupt audio output as a result of recognition of a
user utterance. Barge-in is a mode of the application and is only pos-
sible in a full-duplex system.

BNF (Backus-Naur Form)
A notation for describing the syntax of a language. The grammar
format that is recognized by CASSI™. For example, the notation for
a grammar rule called <filemenu> could be written like this:

<filemenu> ::= OPEN_FILE | CLOSE_FILE

CASSI (Conversay Advanced Symbolic Speech Interpreter)
The core speech recognizer and synthesizer used by Mobile
Conversay™ SDK.

CASSI Services
The API that interacts with CASSI. May be accessed through C or
C++.

class factory
An object that facilitates the creation of instances of the root object.
The class factory of the CASSI Services API is
CVACreateInstance.

context
A logical grouping of topics. For example, in a speech application
that provides access to flight reservations, topics that are related to a
particular itinerary may be grouped into one context. Ticket price
and seat preferences would be two other contexts.

74
conversational focus
The context and topics that are active. Referred to as “in conversa-
tional focus.” Inactive topics are frequently referred to as “out of
conversational focus.”

duplex
A measure of an audio system’s capability to handle sound input and
output. A full-duplex system is capable of simultaneous input and
output, allowing for barge-in or for recording and playing sound
simultaneously. A half-duplex system must alternate between input
and output.

embedded Linux®
The Linux-based platform for mobile devices, including PDAs and
hand-held computers.

grammar
A set of language rules that aids recognition accuracy and response
time in speech recognition systems by constraining what the speech
engine listens for. For example, a grammar may contain a rule called
“filemenu” that recognizes only “open file” and “close file.” BNF
(Backus-Naur Form) is the grammar format recognized by the
CASSI speech engine.

noise phones
Noises that do not coincide with the phoneme set of a language.

noise phone level
The rate at which the system recognizes noise phones, relative to
normal recognizable speech.

PDA (Personal Digital Assistant)
A small mobile hand-held device that provides computing capabili-
ties for personal or business use. PDAs are typically used for keeping
address book and schedule information, in addition to meeting other
mobile computing needs.

phoneme set
The abstract units of a language’s phonetic system. These units cor-
respond to a set of similar speech sounds, which are perceived to be a
single distinctive sound by human listeners.
Chapter 4: Glossary

75
Pocket PC
The Microsoft® Windows®-powered platform for PDAs and hand-
held computing.

prompt
In a speech application, an audible or visual cue that indicates that it
is the user’s turn to speak.

reco (speech recognition)
The ability to take a voice waveform and match it to a specified
grammar.

ref-count (reference-count)
A count that tracks accessing and closing a topic in a grammar.

When a topic in a grammar is accessed or closed, its ref-count
number is incremented or decremented. Topics with a ref-count

number of 0 are deleted to free system resources.

STP (spelling-to-pronunciation)
A module that allows the CASSI speech engine to synthesize and
recognize speech without looking up the pronunciation in the speech
engine’s dictionary module. Without STP rules, applications must
have all grammar items loaded in a dictionary to allow the grammar
to be compiled.

threshold (or voice threshold)
An amplitude energy level that must be overcome before a waveform
will be sent to the recognition engine.

topic
Specification of the words that can be recognized by the speech
engine in a particular context. For example, in a speech application
that provides banking services, topics in the checking account
context could specify words that are related to transaction dates,
check numbers, payments, and deposits.

TTS (text-to-speech)
The synthesis of text into speech waveforms. The text-to-speech
capability of the CASSI speech engine includes text normalization
and prosody processing.
Chapter 4: Glossary

76
utterance
A single spoken event. May consist of a single word or of several
words spoken continuously.

VUI (voice user interface)
A user interface that includes speech recognition, recorded speech
output, and synthetic speech output to communicate with the user.

WCIS (What Can I Say?)
A help service that informs the end user of the commands that the
system is listening for. For example, a WCIS response could be,
“You can say coffee, tea, milk, or no beverage.”

WYS (What You Said)
A help service that informs the end user of what the speech engine
has recognized as input.
Chapter 4: Glossary

Index
A
Acrobat Reader 11
Activate 36
activating topics 36, 43
AddRef 31
Adobe Acrobat Reader 11
alphabet 67
ARM 21
ARMdbg 27
ARMrel 27
assistance for users 56
audio

conflicts between programs 30
instantiating 40
instantiating an output stream object 41

audio system, controlling 36
avoiding duplication 31

B
Backus-Naur Form 60, 73

about 61
example of 62, 63, 68, 71
interacting with CASSI 62
optional rules 66
recursive grammars 67
setting a grammar for a topic 42
substituting words in 65
tips 70

barge-in
definition of 73

basics 37
best practices 32
binary files 28

BNF 60, 73
about 61
example of 62, 63, 68, 71
grammar 10
interacting with CASSI 62
optional rules 66
recursive grammars 67
setting a grammar for a topic 42
substituting words in 65
tips 70

C
C API

developing in 13
sample application 13

C language 13
C++ language 13
C5ae.stp 28
c5ae.stp 16, 17, 22
C5ae08k.aqt 28
c5ae08k.aqt 16, 17
C5ae08k.mod 28
c5ae08k.mod 16, 17, 22
C5ae11k.spk 28
c5ae11k.spk 16, 17, 22
c5aem08k.aqt 22
C5aemain.cdc 28
c5aemain.pdc 16, 17, 23
C5cassi.dll 16, 22
calculator 29
callback

processing 36
processing, example of 44
setting 35
setting, example of 43

CASSI 16, 73
interacting with BNF 62

CASSI Services 16
definition of 73

CASSI_HOME 17

Index
causes of errors 55
characters 62
CHelloWorldApp 38, 40, 44, 46
chip sets 21, 27
class constructor 39
class destructor 40
class resources, releasing 37
commands, listening for multiple 71
communicating status to the user 53
Compile 35
compiled HTML 12
compiling

speech application 26
topic 31
topic, example of 43

concatenation 62, 63, 65
conditional rules 66
confirming recognition 53
conflicts, audio resources 30
consequences of errors 55
constructor 39
context 30

adding a topic to 42
adding to an SR object 34, 41
creating 33, 40
definition of 73
example of 33
instantiating 41
multiple contexts 36

continuous recognition 67
controlling the audio system 36
conversational flow, how to improve 52
conversational focus 30, 36, 74
Conversay Advanced Symbolic Speech Interpreter
73
Conversay Developer Network 18
Conversay documentation 18
cues 51
cues, visual 54
CVAApi.lib 27

CVAAudio.dll 16, 22
CVACreateInstance 33, 34
CVAOBJMACROS 13
CVAProxy.dll 16, 22
CVAPtr.h 26
CVAPwrMgmt.exe 16, 22
CVAServer.exe 16, 22
CVAServices.h 26, 38
cvaservices.h 13
CVATypes.h 26

D
data files 28
data type declarations 26
Deactivate 36
deactivating

topic 36
debug libraries

Pocket PC emulator 27
SH3 27
StrongARM 27

declarations, public data type 26
defining strings 38
definition end indicator 63
definition indicator 63
designing a voice user interface 10, 49, 50
destructor 40
digits, concatenating 65
documentation

formats 11
duplication, avoiding 31

E
Embedded Linux 74
environment variable 17
error handling 55

example of 46
providing examples to users 56
providing explicit choices to users 56
providing visual cues to users 57

Index
errors
causes of 55
consequences of 55
tips for handling 55

eventData 36
EventMsg 36
exit event 45
explicit feedback 53
explicit prompts 51

F
failures 55

causes of 55
consequences of 55
tips for handling 55

features 9
feedback

in mixed modal systems 54
introduction to 53
tips 53

file paths 38
FinancialApp 29
focus 30, 36

hierarchy 30
format

compiled HTML 12
HTML 12
PDF 11

G
getting started 10

grammar
best practices 71
complex 67
creating 40
example of 45, 46, 63, 68
optional rules 66
recursive 67, 71
setting for a topic 42
spelling in 70
substituting words in 65
tags in 65
tips 70

grammar, example of 45

H
hardware requirements 21
header files 26
hello world 37
hellobye.wav 43
hellostart.wav 43
HelloWorld 29
hierarchy

conversational focus 30
hints 51
Hitachi 21
HTML 12

I
ICVAContext 30, 33, 34, 37
ICVASRInstance 30, 33, 34, 37
ICVATopic 30, 34, 35, 36
ICVATTSInstance 33
implicit feedback 53
implicit prompts 51
improving speech recognition 62
include files 26, 38
incremental prompts 52, 56
instantiating context 41
instantiating speech recognition 40
instantiating TTS 41

Index
interface declarations 26
introduction 8, 9, 10, 37

L
latency 52
libraries 27
limiting words listened for 62
linking a speech application 26
Linux 21
listening

for lists 71
for multiple commands 71
for multiple phrases and synonyms 71
for optional words 71
for speech 33

lists, listening for 71
loan calculator 29

M
main function, example of 48
memory 21, 31
messages, repetitive 56
meta-symbols 62
military alphabet 67
minimizing user error 55
MIPS 21
mixed modal system 58

visual cues 57
multiple commands 71
multiple contexts 36
multiple phrases and synonyms 71
multiple topics 36
multithreaded application support 30

N
noise phone

noise phone symbol 71
noise tolerance 71
non-terminal 63
non-terminal symbols 62

O
optimizing performance 31, 32
optimizing speech recognition 62
optional rules 66
optional words 71
or indicator 63
overview 10

P
path names 38
PDA 74
PDF 11
performance, optimizing 31
personal digital assistant 74
playing wave files 43
Pocket PC 75
Pocket PC emulator 21

debug libraries 27
release libraries 27

pointer 26
portability 38
portability.h 38
procedures, identifying 11
progressive assistance for users 56
prompts

choosing between explicit and implicit 51
incremental 52
introduction to 51
tapering 52

public data type declarations 26

R
RAM requirements 21
reco, definition of 75
recognition

continuous 67
example of 38
improving 62

recursive grammars 67, 71
ref-count, definition of 75

Index
reference count 31, 75
Release 31, 37
release libraries

Pocket PC emulator 27
SH3 27
StrongARM 27

ReleaseResources 44
releasing resources 37, 44, 46
removing unnecessary words 52
repetitive messages 56
resource management 31
resources, releasing 37, 44, 46
rules 62

any 71
for grammars 64
if left undefined 70
optional 66

run-time files 28

S
sample application 37
saving time of expert users 52
saying lists of words 67
saying strings of numbers 67
SDK 75
SetEventCallback 35
SetGrammar 35
Setup.exe 22
SH3 21

debug libraries 27
release libraries 27

SH3dbg 27
SH3rel 27
smart pointers 26
software development kit 75
speech patterns, designing for 66
speech recognition 75

example 38
instantiating 40
speech recognition object 33

speech synthesis 33
spelling

in grammars 67, 70
spelling to pronunciation 75

SpPref.exe 16
SR 30
SR object 33
STDTypes.h 26, 38
step-by-step guide 32
STP 75
strings, defining 38
StrongARM 21

debug libraries 27
release libraries 27

substituting words 65
SuperH 21
synthesizing speech 33
system requirements

hardware 21
system resources

freeing 31
releasing 46

T
tag mapping 65
talking to the user 33
tapering prompts 52
tasks, identifying 11
technical support 18
terminal 63, 64

misspelled 70
terminal symbols 62

text 63
text feedback in GUI 54
text-to-speech 75

instantiating 40, 41
TTS object 33

threshold 75
tips for handling errors 55

Index
topic 30, 75
activating 36, 43
adding to a context object 42
adding to context 34
compiling 31
creating 34, 40, 42
deactivating 36
example of topic object 34
multiple topics 36

TTS 75
instantiating 40, 41
TTS object 33

U
uncompiled HTML 12
user error 55

V
verbal thinking 50, 58
visual cues 54, 57
voice threshold 75
voice user interface 76

principles of design 49
user’s verbal approach 50

VUI 76
GUI considerations 58
principles of design 49
user’s verbal approach 50

W
wave file

playing 43
WCIS 76
well-behaved applications 32
What Can I Say 76
What You Said 76
WYS 76

X
X86EMdbg 27

X86EMrel 27

	Introduction
	Features of Mobile Conversay SDK
	Overview
	Documentation Conventions
	Documentation Formats

	Developing in C
	Deploying on the Pocket PC Platform
	Deploying on the Embedded Linux Platform
	Other Resources

	Getting Started
	Supported Operating Systems
	Hardware Requirements
	Installing Mobile Conversay SDK on Windows
	Installing Mobile Conversay SDK on Linux
	Header Files
	Library Files
	Data Files
	Sample Applications
	Creating Well-Behaved Applications
	Conversational Focus Management
	Data Lifetime Control
	Steps to Creating Well-Behaved Applications
	Step 1. Creating a Speech Recognition Object
	Step 2. Creating a Text-to-Speech Object
	Step 3. Creating a Context Object
	Step 4. Creating a Topic Object
	Step 5. Setting and Compiling the Grammar
	Step 6. Setting the Callback Functions
	Step 7. Controlling the Focus
	Step 8. Processing Callback Events
	Step 9. Releasing the Class Resources

	Understanding the Basics: The Hello World Example
	Including the API Headers
	Defining Strings for OS Portability
	Defining the CHelloWorldApp Class
	Defining the Class Constructor
	Defining the Class Destructor
	Defining the CHelloWorldApp:: Run Method
	Creating the Speech Recognition Object
	Creating the Text- to-Speech Object
	Creating the Audio Output Object
	Creating a Context Object
	Adding the Context to the SR Object
	Creating a Topic Object
	Adding the Topic Object to the Context Object
	Setting a Grammar for the Topic
	Compiling the Topic
	Setting the Callback Function
	Activating the Topic
	Playing the .wav Files
	Calling the ReleaseResources() Function
	Defining the CHelloWorldApp:: Callback Method
	Recognizing the HELLO Grammar
	Recognizing the BYE Grammar
	Recognizing the HELP Grammar
	Defining CHelloWorldApp:: ReleaseResources
	Defining the Main Function

	Designing a Voice User Interface
	Designing For Speech
	Prompts
	Explicit and Implicit Prompts
	Tapering Prompts
	Incremental Prompts

	Feedback
	Tips for Providing Feedback

	Dealing with Failures and Errors
	Causes and Consequences of Failures and Errors
	Tips for Handling Failures and Errors

	Mixing VUIs and GUIs
	Latency

	BNF Grammar
	About Backus-Naur Form
	Using BNF Grammars with CASSI
	A Simple Grammar
	Using Tag Mapping
	Making Rules Optional
	Using Recursive Grammars
	Creating More Complex Grammars
	Tips for Forming Grammars

	Example Grammars

	Glossary

