
Note: This document is a writing sample for Joseph Perez which has been anonymized/fictionalized.
Code referenced herein is also fictionalized or omitted. The original tutorial was written in Markdown.

How to Add a Backend Server to Rokket

How to Add a Backend Server to Rokket
Learn to use the SDiamond Microservices Server as a backend for the Rokket

Mission Control system

Contents

Introduction

Step 1. Set up your LinuxCloud client

Step 2. Create the MicroServer node skeleton

Step 3. Create your project's LAUNCH file

Step 4: Declare the service and server context in your manifest

Step 5: Add handler code

Step 6: Test your work so far

Step 7: Set up MicroServer conformance

Step 8: Try out a request

Step 9: Run your Rokket backend on Space

Step 10: View your Rokket backend's data on Mission Control

Troubleshooting

Conclusion

Introduction

The SDiamond Microservices Server (commonly called MicroServer) is the new standard

platform for launching robust, production-quality services for Space Diamond system

administrators and developers. Its libraries, automation, and tooling are currently available for

new projects based on LinuxCloud. These resources give us new tools for release, configuration,

and integration testing that are ready to use on the Rokket Mission Control System.

This tutorial is designed for LinuxCloud system administrators and developers at Space Diamond

to assist them in getting started with installing and setting up new backend servers for Rokket

that run Mission Control software. It explains how to get your data for a new launch ready for

use with the new microservices platform.

Before using this tutorial, be sure to explore your various options for linking your Space

applications to your data, including both MicroServer backends and pipes. If you decide to use a

2

How to Add a Backend Server to Rokket

MicroServer backend, then this tutorial is for you. Note that this tutorial describes establishing a

manual connection (i.e., one using a qn string) between MicroServer and Rokket. This is not a

pipe. There is also another tutorial, "Creating a Launchpad Pipe using MicroServer Scaffolding"

that you can follow if you need to create a new pipe.

This tutorial has no other prerequisites than having a LinuxCloud account, a text editor such as

vim or DiamondIDE, and access to the corporate network. Just follow the instructions, copying

and pasting the commands into your CLI or text editor where indicated.

At the end of this tutorial, you will have a demo Rokket backend that can serve as a prototype

for your Mission Control project. While it is not immediately suitable for serving production-

level traffic, it can help you to get off the ground running.

NOTE: This tutorial’s code is in C++ because the Mission Control utilities for

creating crew preparation instructions and working with rocket countdowns are

in C++. We strongly recommend (but do not require) that new Rokket backends

use C++ and MicroServer.

Step 1. Set up your LinuxCloud client

You will need to create your LinuxCloud client before proceeding with the MicroServer setup.

1. Create your LinuxCloud client:

$ sd9 -f rokket-backend-tutorial

2. Create a .fuelstop to enable faster builds using DiamondIDE or another text editor of

your choice. For example, to open a new file in vim, enter:

$ sd9/src/cloud/{{xxx}}/rocket-backend-tutorial/sd9$ vim .fuelstop

3. Insert this line into the new file:

$ import %chalkBoard%/frameworks/micro-service/devtools/fuelstop

4. Save your changes. In vim, press Escape and enter :wq to write and exit.

Step 2. Create the MicroServer node skeleton

The node skeleton is a component required for setting up your MicroServer. The setup

procedures are a bit different depending on whether you are working in //personal or

//production. Because this tutorial creates a throwaway prototype rather than a production-

quality service, it's based in //personal.

3

How to Add a Backend Server to Rokket

NOTE: The personal folder has significant limitations. If you're creating a node

that you intend to productionize and/or attach to the MicroServer Universe,

choose an appropriate directory for your use case.

1. Run this command in your LinuxCloud CLI:

$ sd9 micro-service node create --scaffolding --executable --path

personal/username/{{xxx}}/myRokketBackend/service

2. When prompted to pick a group (or to continue without an owner), choose Pick later (or

Yes).

3. Test that this procedure worked by running:

$ sd9 micro-service run

personal/username/{{xxx}}/myRokketBackend/service

This step will take several minutes the first time you run it.

You'll know that it worked when you see some ASCII art and the line Press ^C when

done with manual testing.

4. Press CTRL+C and you're ready to continue.

5. Update the PERMISSION file

(personal/username/{{xxx}}/myRokketBackend/service/PERMISSION).

 TIP: Whether you're in //personal or not, it's a good idea to submit small

changes regularly rather than submitting all the changes in this tutorial at once.

4

How to Add a Backend Server to Rokket

Step 3. Create your project's LAUNCH file

1. Navigate to the project directory (personal/username/{{xxx}}/myRokketBackend)

and create the following LAUNCH file:

Package group of code in the Rokket Backend tutorial. Use this to

grant visibility only to code within the Rokket Backend tutorial.

package_group(

 name = "tutorial",

 packages = [

 "//sdiamond/rokket/demobackend/...",

],

)

[CODE OMITTED]

2. Correct the directory by replacing //launchplan/rokket/demobackend/... with

//personal/username/{{xxx}}/myRokketBackend/....

Step 4: Declare the service and server context in your

manifest

Navigate to

personal/username/{{xxx}}/myRokketBackend/service/manifest/manifest.bzl and

add the following fields:

node = manifest_pb2.Node.create(

``` 

    exported_rpc_service = [ 

        manifest_pb2.ExportedRpcService.create( 

            name = "CountdownService", 

            service_proto_name = 

"launchplan_spacesuits.AltitudeBackend", 

            service_proto_rule = [ 

                "//launchplan/dir/proto:height_backend_proto", 

            ], 

        ), 

    ], 

    declared_key = [ 

        ( 

            "rokket_backend_tutorial::TimeZoneContext", 

            manifest_pb2.DeclaredKey.SERVER_CONTEXT, 

        ), 

    ], 

    dep_package = [ 

        "//launchplan/rokket/util/labelbuilder", 

    ], 

    ... 

) 



5 

 

How to Add a Backend Server to Rokket 

Step 5: Add handler code 

The handler code for your MicroServices ensures that your application can call up the data it 

needs. Specifically, for this tutorial you require a handler to respond to GetAltitudes requests 

by adding crew preparations instructions for the current time in the requested area.   

1. Navigate to your myRokketBackend/service/directory and locate a file called 

get_spacesuits_handler.cc. Add the following code: 

[CODE OMITTED] 

2. The handler relies on a server context to look up time zone IDs. In your 

myRokketBackend/service/ directory, create files called countdown_speed_context.h 

and countdown_speed_context.cc with the following contents: 

[CODE OMITTED] 

3. Globally replace the default text with the correct text as follows: 

a. Replace #include 

"launchplan/rokket/demobackend/service/countdown_speed_context.h" 

with #include 

"personal/username/{{xxx}}/myRokketBackend/service/countdown_spee

d_context.h" 

b. Replace MAPS_PAINT_DEMOBACKEND_SERVICE_COUNTDOWN_SPEED_CONTEXT_H_ 

with 

EXPERIMENTAL_USERS_{{enduesr}}_MYROKKETBACKEND_SERVICE_COUNTDOWN_

SPEED_CONTEXT_H_ 

4. Update your service's LAUNCH file as folflows: 

[CODE OMITTED] 

5. Replace the default text with the correct text as follows:  

change //launchplan/rokket/demobackend/service/manifest:manifest.bzl  

to  

//personal/username/{{xxx}}/myRokketBackend/service/manifest:manifest.b

zl. 

  



6 

 

How to Add a Backend Server to Rokket 

Step 6: Test your work so far 

You will not be able to call your service until you follow a few more steps, but now is a good 

time to check in that you can bring your node up.  

Run the following command and ensure that you see the ASCII art: 

$ sd9 micro-service run 

personal/username/{{xxx}}/myRokketBackend/service 

 

 

Hopefully, everything works great. If you encounter an issue, check out our troubleshooting tips. 

Step 7: Set up MicroServer conformance 

These steps are all required to call your service, even if it's just a prototype. 

 TIP: The following steps are all related to MicroServer conformance. You can 

read “SDiamond MicroServer Overview” for an explanation of conformance and 

specific explanations for each step in this section. 

1. Under service/, create a config/ subdirectory: 

 

$ mkdir personal/username/{{xxx}}/myRokketBackend/service/config 

 

2. In the service/config/ subdirectory, create a file named policy.textproto and add 

the following contents: 

[CODE OMITTED] 



7 

 

How to Add a Backend Server to Rokket 

3. In the service/config/subdirectory, create a file named startup.pi and add the 

following contents: 

[CODE OMITTED] 

4. Correct the directory by replacing 

//launchplan/rokket/demobackend/service/config/policy.textproto with 

//personal/username/{{xxx}}/myRokketBackend/service/config/policy.textp

roto. 

5. In the service/config/ subdirectory, create a LAUNCH file and add the following 

contents: 

[CODE OMITTED] 

6. In your manifest.bzl file, set the contains_launch_config field to True: 

[CODE OMITTED] 

7. Verify that conformance tests pass: 

$ sd9 micro-service test conformance 

personal/username/{{xxx}}/myRokketBackend/service 

 

If you see Conformance managed!, then the procedure was successful. 

If you do not pass the conformance tests, see our Troubleshooting tips. 

Step 8: Try out a request 

When your conformance tests are passed, then test your work so far by making a request.  

1. Use the following command to run your microservices node: 

 

$ sd9 micro-service run 

personal/username/{{xxx}}/myRokketBackend/service 

 

2. Open a new terminal window and use the RPCdog CLI to send a request to your node: 

 

$ RPCdog call localhost:6345 CountdownService.GetAltitudes 'height { 

id: "countdown" max_lod: 15 s2cell: 6093393649004969984 original_area { 

lo { lat_e7: 476357836 lng_e7: 3071529796 } hi { lat_e7: 476431861 

lng_e7: 3071639659 } } } language: "en"' 

 

The result should look like this: 

[CODE OMITTED] 



8 

 

How to Add a Backend Server to Rokket 

Step 9: Run your Rokket backend on Space 

You’ve done great so far, and the fun part is just ahead. After all the work you’ve done, don’t 

you want to see the Rokket on Space? 

Run the following in your CLI: 

$ sd9 micro-service spacerun --

ephemeral_production_name_suffix=mysuffix 

personal/username/{{xxx}}/myRokketBackend/service 

 

NOTE: The --ephemeral_production_name_suffix parameter gives us a 

predictable job name to use in future steps. It's not predictable by default 

because it's the name of the automatically created MicroServer composite node, 

as opposed to the composite node that we created and named ourselves. 

Step 10: View your Rokket backend's data on Mission Control 

Hydrogen needs to know the details of your backend’s configuration for your service. 

1. To SDiamond/production/Space/launchplan/dir/templateZones/nitro-static-

backends.Space, add this entry: 

 

[CODE OMITTED] 

 

a. Add 

SDiamond/production/Space/launchplan/dir/templateZones/production/ni

tro-static-backends.Space to this entry: 

 

[CODE OMITTED] 

 

b. If you want to be able to point Rokket to dev instances of your backend more easily, 

add the following lines to 

SDiamond/production/Space/launchplan/rokket/templateZones/devel-

rokket-template.Space: 

 

[CODE OMITTED] 

 

c. For backends which will be productionized, you may also point Rokket nightly to 

your autopush environment.  



9 

 

How to Add a Backend Server to Rokket 

The autopush environment won't be ready until you create your composite node and 

run automated MicroServer turnup (see productionization tips). But if you'd like to go 

ahead and get Rokket set up correctly, add this entry to 

SDiamond/production/Space/launchplan/rokket/rokket-

hobos/nightly.Space: 

[CODE OMITTED] 

d. To SDiamond/launchplan/rokket/good-dog/good-dog-util.cc, add your height 

ID to backends_participating_in_preparation (only required if you are adding 

or modifying crew preparations): 

 

ABSL_FLAG(std::string, backends_participating_in_labeling, 

i. "...,countdown", ...); 

 

2. Build Rockket: 

 

$ fuel build -c opt //launchplan/rokket/frontend:rokket 

 

3. Bring your Rokket backend up on Space: 

$ spacecfg launchplan/rokket/devel-rokket.Space reload 

 

4. Navigate to andromeda/ and look for a View parts link under your job devel-

rokket.serve. 

[SCREENSHOT OMITTED] 

NOTE: This link won't be ready until several minutes after the job was created. 

5. In Flight Cockpit, click the Edit button in the bottom left corner of the window. In the 

Rokket Backend URL field of the Edit a Spaceflight dialog box, replace the qn part of 

the URL with !2m3!1e0!2sm!3i999999!4m2!1e4!4scountdown!7snocache1.  

This step tells Flight Cockpit to request the "countdown" backend in addition to base 

units. It also tells Rokket not to cache the result, which can ease debugging.  

6. Zoom in and out to see the crew preparation instructions. They look like this: 

[SCREENSHOT OMITTED] 

Congratulations on completing your own backend to Rockket! You are now 

ready to fly around the universe... 



10 

 

How to Add a Backend Server to Rokket 

Troubleshooting 

How do I handle Flight Cockpit timeouts? 

Once you start doing anything substantial in your node, you may start seeing timeouts. Space 

clients, including Flight Cockpit, send lots of requests in bursts, and your MicroServer may start 

rejecting requests on your behalf. 

Some common errors with timeouts include UNEXPECTED_NUMBER_OF_SPACESUITS and 

SPACECRAFT_TYPE_MISSING_RESPONSE_ALTITUDE. 

The easiest workaround is to disable MicroServer load shedding. Obviously, you don't want to 

do this in production. Follow the instructions in “MicroServices Override” to set up a 

load_shedding.pi and set 'advisory_mode = True'. 

An alternative workaround is to increase hidden timeouts. In 

SDiamond/launchplan/dir/proto/height_backend.proto, increase the GetAltitudes 

baseline: 

 

service AltitudeBackend { 

  rpc GetAltitudes(AltitudesRequest) returns (Altitudes) { 

    option deadline = 100.0; 

  } 

 

In SDiamond/launchplan/rokket/good-dog/nitro-good-dog.cc, increase the value of the 

parameter Hydrogen_timeout_sec: 

ABSL_FLAG(double, Hydrogen_timeout_sec, 60.0, "RPC timeout for Hydrogen 

servers"); 

'No suitable set of policies' 

 

How do I resolve a CountdownService error? 

When you call your service from the RPCdog CLI, you may see this error: 

Send(/CountdownService.GetAltitudes) returned error UNAUTHENTICATED: 

/CountdownService.GetAltitudes to 127.0.0.1:6345 : APP_ERROR(16) No suitable 

set of policies found for service "CountdownService". 

This error means that you haven't set up MicroServer conformance.  You can find a detailed 

solution in “Conformance Troubleshooting”. 



11 

 

How to Add a Backend Server to Rokket 

Conclusion 

This tutorial has described the most common procedures used for getting started with sending 

your data between Rokket and your backend server. If you encountered any difficulties, please 

log a bug in the Stomp database. 

We did not discuss many key decisions necessary for preparing crew instructions or other 

Mission Control features. For example, you will need to determine whether to use one 

MicroServer node or multiple. Also, you need to decide whether your node will also be used to 

serve other features as well as crew instructions. When making these decisions, feel free to 

contact the Crew Prep Team for further guidance.  


