
 Joe Perez – Fictionalized Sample – Page 1

Integrating IsOnline Services

Core Concepts

This guide uses the concepts of Client, IsOnline Notifications, IsOnline Session, IsOnline

Status, and others, as they are described in “Core Concepts”.

Overview of IsOnline Lifecycle

This is the typical sequence of requests and responses that a client follows during its

normal operation. With the exception of direct queries, all IsOnline events exist within

the context of a single IsOnline session.

The standard intended lifecycle of an IsOnline service client goes like this:

1. Incepting an IsOnline Session

2. Subscribing to a Notification

3. Updating IsOnline

• Receiving Notifications

• Closing a Session

Phases 2 and 3 can overlap freely. For example, a client can add or remove subscriptions

at any time with an active IsOnline session. They constitute the “live activity” of an

IsOnline session.

Incepting an IsOnline Session

The following diagram illustrates the steps for incepting an IsOnline session.

[FLOWCHART OMITTED]

 Joe Perez – Fictionalized Sample – Page 2

1. The Client calls or the IsOnline service responds with MakeIsOnlineSession() ,

with parameters containing the client information: platform, product, locale,

and UserID . The UserID is passed in a JWT header.

2. The Client calls or the IsOnline service responds

with MakeIsOnlineSessionResponse , containing the SessionID and

the SessionToken for the newly created session. The client should keep those for

later use.

3. The Client calls or the IsOnline service responds

with ConnectToIsOnlineSession() , with parameters containing

the SessionToken received above, as well as the initial IsOnline state for the client.

This activates the IsOnline session and sets its IsOnline state. If there are clients

that are subscribed to this user, a notification is sent to them about a new session

going online. The response stream for this call is the IsOnline events stream.

During initialization, the client performs two RPC calls: MakeIsOnlineSession() followed

by ConnectToIsOnlineSession() . The first call sets the client parameters and provides

session authentication information for the client. In particular, the Session Token

received in the response is needed in all subsequent operations (updating own IsOnline

state, managing subscriptions). The second call opens the stream through which all

IsOnline notifications are sent to the client.

Once both operations succeed, the client (the IsOnline session of the user on the

particular client) is officially online as far as the IsOnline service is concerned, and other

IsOnline sessions that have a subscription for the user would receive a notification.

 Joe Perez – Fictionalized Sample – Page 3

Subscribing to Notifications

Once a client has a Session Token, it can start subscribing to the IsOnline updates of

other users. A subscription request for a single target user, SubscribeToUserIsOnline() ,

does the following:

1. Retrieves the current IsOnline state of all sessions of the target user, and reports

to the requesting client via the Events Stream (set up during the initialization

phase).

2. Sets up the internal subscription for the future updates to all of the target user’s

sessions (new sessions, updates or closures of existing sessions).

Based on the online state of the target user, the immediate outcome of the subscription

can be slightly different. See the following two cases:

Case 1 – Target user has one or more online sessions

The requesting client receives an IsOnline Notification for every IsOnline session on

record.

[FLOWCHART OMITTED]

1. SubscribeToUserIsOnline() passes the session token and the target user ID.

Server sets up the subscription for future updates.

2. The async request is sent to the internal storage for all sessions of the target user.

3. SubscribeToUserIsOnlineResponse indicates that subscription has been set up.

4. A result arrives from the storage component.

5. The IsOnline service transforms the result into a IsOnlineNotification and sent

through the events stream. The event stream was set up

by ConnectToIsOnlineSession() during initialization.

6. 4 and 5 repeat for every active session of the target user, and so on…

Case 2 – User is offline (no active sessions)

 Joe Perez – Fictionalized Sample – Page 4

When the target user has no active sessions, the IsOnline Service sends a notification

that contains no session information, the user-level flag which is set to offline , and the

“last seen online” timestamp.

[FLOWCHART OMITTED]

1. SubscribeToUserIsOnline() passes the session token and the target user ID.

2. Server sets up the subscription for future updates. The async request is sent to

the internal storage for all sessions of the target user.

3. SubscribeToUserIsOnlineResponse indicates that the subscription has been set

up.

4. Storage indicates that there are no active sessions.

5. Storage responds with a record of user-level information. In practice, this step is

done in both cases, but its response only matters for the fully offline case.

6. Response: user-level information including the last seen online timestamp.

7. A IsOnlineNotification is generated and sent through the events stream. The

event stream was set up by ConnectToIsOnlineSession() during initialization.

The notification contains an offline user-level flag and the “last seen online”

timestamp.

Friend List Subscription

Keeping track of all friends’ IsOnline is a frequent use case, and the IsOnline service has

a dedicated RPC for that: SubscribeToFriendsIsOnline() . The single parameter for the

call is the session token. The call does the following:

1. Retrieves the current friend list for the user.

2. Similar to the single-target subscription, retrieves the current state for every user

on the friends list, and communicates it via Notifications on the event stream.

3. Similar to the single-target subscription, sets up internal subscriptions for all users

on the friends list.

4. Starts listening for the updates from Friends Notifications, and updating the

subscriptions accordingly.

 Joe Perez – Fictionalized Sample – Page 5

The output for the SubscribeToFriendsIsOnline() call is similar to the single-target call:

a simple acknowledgement for the call itself, the at least one IsOnline Notification on the

events stream for every user on the friends list. In effect, the set of notifications would

be the same if each friend is subscribed to individually (IsOnline-update-related race

conditions notwithstanding).

Updating IsOnline

The IsOnline session status is set in two ways: at the session initialization, and through

live updates. The IsOnline updates can be sent at any time while an IsOnline session is

active (that is, has an active events stream created

by ConnectToIsOnlineSession() during the initialization phase).

The IsOnline status can be updated via the UpdateIsOnlineSession() RPC. The

parameters for the call are the session token and the IsOnlineUpdate payload. The call

has the following effects:

1. The update payload is stored as the “current state” of the session, to be later

retrieved as part of subscription or a direct get-IsOnline request.

2. The update is broadcast to all of the subscribers of the session’s user. Before

being sent to each subscribing client, the update would be transformed into an

IsOnline Notification and localized.

[FLOWCHART OMITTED]

1. UpdateIsOnlineSession() call, supplies a session token and the update data. The

session token is decrypted to get a SessionID .

2. Update data stored as the latest known IsOnline state of the session.

3. Update is broadcast to all subscribers of the session’s user.

4. Update is acknowledged by the user.

