Joseph Perez Sample (fiction inspired by Electronic Arts)

Service Overview: Presence API

Introduction

The Presence API is a high-availability, low-latency service designed to bridge the gap
between static friend lists and active gameplay sessions. While the Friends APl manages
the persistent social graph (the "who"), the Presence APl manages the real-time state (the
"what" and "where").

By integrating this service, game teams enable players to visualize their social circle's
activity, facilitate direct communication, and drive player engagement through seamless
session "join-in" functionality.

Core Functionality

The Presence service is built on a publish-subscribe architecture that handles four primary
domains:

Feature Description Dependency
Status

. Monitors if a user is Online, Offline, Away, or "In-Game." |[ldentity Core
Tracking
Rich Metadata describing the player's specific state (e.g., "In

Game Client
Presence Lobby," "Level 42 Mage").

Real-time XMPP-based text routing between Notification

Messaging])
authenticated users. Service

. Secure handshake protocol to pass session IDs .
Invitations . Matchmaking API
between clients.

Technical Implementation

1. State Management

Presence is ephemeral. When a client initializes a heartbeat with the gateway, the service
updates the distributed cache (Redis) with the user’s current AvailabilityStatus.

e Heartbeat Interval: 30 seconds.

Joseph Perez Sample (fiction inspired by Electronic Arts)

e TTL (Time-to-Live): 90 seconds (automatic "Offline" transition upon heartbeat
failure).

2. Rich Presence Data (RPD)

Developers can push custom JSON blobs to the RPD field. This allows other players to see
context-specific information in their Ul.

JSON

{

"userId": "1002938475",

"status": "ONLINE",

"richPresence": {
"gameId": "Project Atlas",
"state": "EXPLORING",
"map": "Hinterlands",
"partySize": 3,
"maxPartySize": 4,
"joinable": true

3. Invitation Flow: "The Join-In"

The Presence API facilitates the Invite-to-Play flow by acting as the secure transport for
Session URls.

Originator: Calls POST /v1/invite/send with the target friendld and sessionld.

Service: Validates the friendship via the Friends API.

Recipient: Receives a push notification containing the inviteToken.

Acceptance: The recipient client resolves the inviteToken to the sessionld and triggers
the game engine's network join logic.

o b

API Endpoints (Internal)

GET /v1/users/{userld}/presence

Retrieves the real-time status and Rich Presence data for a specific user. Use this for
populating Social Sidebars.

POST /v1/users/me/status
Updates the authenticated user's status.
o Payload: {"status": "BUSY", "message": "Boss Fight - Do Not Disturb"}

POST /vi/messages/send

Joseph Perez Sample (fiction inspired by Electronic Arts)

Routes a peer-to-peer message.

¢ Rate Limit: 10 messages per 5-second window to prevent spamming.

Best Practices for Game Teams

« Batching: When rendering a friends list of 100+ people, do not call the Presence API
for each user. Use the POST /v1/presence/batch endpoint to retrieve statuses in a single
round-trip.

e Privacy: Always respect the PrivacySettings flag. If a user is in "Invisible" mode, the API
will return OFFLINE regardless of their active socket connection.

Note to Developers: To request a higher throughput quota for seasonal events or beta
launches, please submit a ticket via the EAX-Infrastructure portal under the "Scaling
Request" category.

Integration Guide: Real-Time Invitations

1. Architectural Overview

To ensure a seamless player experience, the invitation flow must handle three distinct
states: Sending, Receiving (Toast), and Executing (Join).

2. Implementation: Sending an Invite

When a player selects a friend from the social Ul, the game client must package the current
session's connection metadata into an invitePayload.

C++ Interface Example:

C++

// Define the invitation payload
FPresencelInvitePayload InviteData;
InviteData.SessionId = CurrentGameSession->GetId();

InviteData.MapName = "Hinterlands_PVP";
InviteData.JoinString = "-connect 192.168.1.1:7777"; // Internal routing
string

// Execute the send via Presence Service Wrapper
PresenceService->SendInvite (TargetFriendId, InviteData,
FOnInviteSent: :CreatelLambda ([] (bool bSuccess) {

if (bSuccess) {
UI->ShowNotification ("Invite Sent!");

Joseph Perez Sample (fiction inspired by Electronic Arts)

3. Implementation: Handling Incoming Invites

The client must register a listener with the Presence Gateway to intercept incoming invite
packets. This usually occurs at the Gamelnstance level to ensure persistence across level
loads.

A. The Notification (Toast)

When the OnlinviteReceived delegate fires, the game should display a non-intrusive Ul
element.

o Key Data: The payload contains the SenderName and RichPresence metadata (e.g., "In
a 3/4 Party").
e Action: Provide two buttons: Accept and Decline.

B. The Join Logic

If the user accepts, the game must transition from the current state (Main Menu or active
game) to the new session.

C++
void UMyGameInstance: :HandleInviteAccepted (const FPresencelnvitePayloadé&
Payload) {

// 1. Teardown current session
SessionManager->DestroyCurrentSession () ;

// 2. Parse the JoinString from the Presence Payload
FString ConnectionURL = Payload.JoinString;

// 3. Initiate the Engine Travel
// This triggers the internal 'map travel' to the remote host
GetWorld () ->GetFirstPlayerController ()->ClientTravel (ConnectionURL,
TRAVEL Absolute);
}

4. Technical Constraints & Edge Cases

Scenario Recommended Handling
Incompatible Compare Payload.Buildld with local Buildld. If they mismatch, block the
Version join and prompt the user to update.

) Query the Matchmaking API using the Sessionld before attempting to
Session Full travel
ravel.

If the player is in a cinematic or un-pausable state, queue the invite in
Player Busy URT e e .
a "Notifications" tray rather than showing a toast.

	Service Overview: Presence API
	Introduction
	Core Functionality
	Technical Implementation
	1. State Management
	2. Rich Presence Data (RPD)
	3. Invitation Flow: "The Join-In"

	API Endpoints (Internal)
	Best Practices for Game Teams

	Integration Guide: Real-Time Invitations
	1. Architectural Overview
	2. Implementation: Sending an Invite
	3. Implementation: Handling Incoming Invites
	A. The Notification (Toast)
	B. The Join Logic

	4. Technical Constraints & Edge Cases

