
 Joseph Perez Sample (fiction inspired by Electronic Arts) 

  1 

Service Overview: Presence API 

Introduction 
The Presence API is a high-availability, low-latency service designed to bridge the gap 
between static friend lists and active gameplay sessions. While the Friends API manages 
the persistent social graph (the "who"), the Presence API manages the real-time state (the 
"what" and "where"). 

By integrating this service, game teams enable players to visualize their social circle's 
activity, facilitate direct communication, and drive player engagement through seamless 
session "join-in" functionality. 

Core Functionality 
The Presence service is built on a publish-subscribe architecture that handles four primary 
domains: 

Feature Description Dependency 

Status 
Tracking 

Monitors if a user is Online, Offline, Away, or "In-Game." Identity Core 

Rich 
Presence 

Metadata describing the player's specific state (e.g., "In 
Lobby," "Level 42 Mage"). 

Game Client 

Messaging 
Real-time XMPP-based text routing between 
authenticated users. 

Notification 
Service 

Invitations 
Secure handshake protocol to pass session IDs 
between clients. 

Matchmaking API 

 

Technical Implementation 

1. State Management 

Presence is ephemeral. When a client initializes a heartbeat with the gateway, the service 
updates the distributed cache (Redis) with the user’s current AvailabilityStatus. 

• Heartbeat Interval: 30 seconds. 



 Joseph Perez Sample (fiction inspired by Electronic Arts) 

  2 

• TTL (Time-to-Live): 90 seconds (automatic "Offline" transition upon heartbeat 
failure). 

2. Rich Presence Data (RPD) 

Developers can push custom JSON blobs to the RPD field. This allows other players to see 
context-specific information in their UI. 

JSON 
{ 

  "userId": "1002938475", 

  "status": "ONLINE", 

  "richPresence": { 

    "gameId": "Project_Atlas", 

    "state": "EXPLORING", 

    "map": "Hinterlands", 

    "partySize": 3, 

    "maxPartySize": 4, 

    "joinable": true 

  } 

} 

 

3. Invitation Flow: "The Join-In" 

The Presence API facilitates the Invite-to-Play flow by acting as the secure transport for 
Session URIs. 

1. Originator: Calls POST /v1/invite/send with the target friendId and sessionId. 
2. Service: Validates the friendship via the Friends API. 
3. Recipient: Receives a push notification containing the inviteToken. 
4. Acceptance: The recipient client resolves the inviteToken to the sessionId and triggers 

the game engine's network join logic. 

API Endpoints (Internal) 
GET /v1/users/{userId}/presence 

Retrieves the real-time status and Rich Presence data for a specific user. Use this for 
populating Social Sidebars. 

POST /v1/users/me/status 

Updates the authenticated user's status. 

• Payload: {"status": "BUSY", "message": "Boss Fight - Do Not Disturb"} 

POST /v1/messages/send 



 Joseph Perez Sample (fiction inspired by Electronic Arts) 

  3 

Routes a peer-to-peer message. 

• Rate Limit: 10 messages per 5-second window to prevent spamming. 

Best Practices for Game Teams 
• Batching: When rendering a friends list of 100+ people, do not call the Presence API 

for each user. Use the POST /v1/presence/batch endpoint to retrieve statuses in a single 
round-trip. 

• Privacy: Always respect the PrivacySettings flag. If a user is in "Invisible" mode, the API 
will return OFFLINE regardless of their active socket connection. 

Note to Developers: To request a higher throughput quota for seasonal events or beta 
launches, please submit a ticket via the EAX-Infrastructure portal under the "Scaling 
Request" category. 

Integration Guide: Real-Time Invitations 

1. Architectural Overview 
To ensure a seamless player experience, the invitation flow must handle three distinct 
states: Sending, Receiving (Toast), and Executing (Join). 

2. Implementation: Sending an Invite 
When a player selects a friend from the social UI, the game client must package the current 
session's connection metadata into an invitePayload. 

C++ Interface Example: 

C++ 
// Define the invitation payload 

FPresenceInvitePayload InviteData; 

InviteData.SessionId = CurrentGameSession->GetId(); 

InviteData.MapName = "Hinterlands_PVP"; 

InviteData.JoinString = "-connect 192.168.1.1:7777"; // Internal routing 

string 

 

// Execute the send via Presence Service Wrapper 

PresenceService->SendInvite(TargetFriendId, InviteData,  

    FOnInviteSent::CreateLambda([](bool bSuccess) { 

        if (bSuccess) { 

            UI->ShowNotification("Invite Sent!"); 

        } 

    }) 

); 

 



 Joseph Perez Sample (fiction inspired by Electronic Arts) 

  4 

3. Implementation: Handling Incoming Invites 

The client must register a listener with the Presence Gateway to intercept incoming invite 
packets. This usually occurs at the GameInstance level to ensure persistence across level 
loads. 

A. The Notification (Toast) 

When the OnInviteReceived delegate fires, the game should display a non-intrusive UI 
element. 

• Key Data: The payload contains the SenderName and RichPresence metadata (e.g., "In 
a 3/4 Party"). 

• Action: Provide two buttons: Accept and Decline. 

B. The Join Logic 

If the user accepts, the game must transition from the current state (Main Menu or active 
game) to the new session. 

C++ 
void UMyGameInstance::HandleInviteAccepted(const FPresenceInvitePayload& 

Payload) { 

    // 1. Teardown current session 

    SessionManager->DestroyCurrentSession(); 

 

    // 2. Parse the JoinString from the Presence Payload 

    FString ConnectionURL = Payload.JoinString; 

 

    // 3. Initiate the Engine Travel 

    // This triggers the internal 'map travel' to the remote host 

    GetWorld()->GetFirstPlayerController()->ClientTravel(ConnectionURL, 

TRAVEL_Absolute); 

} 

4. Technical Constraints & Edge Cases 

Scenario Recommended Handling 

Incompatible 
Version 

Compare Payload.BuildId with local BuildId. If they mismatch, block the 
join and prompt the user to update. 

Session Full 
Query the Matchmaking API using the SessionId before attempting to 
travel. 

Player Busy 
If the player is in a cinematic or un-pausable state, queue the invite in 
a "Notifications" tray rather than showing a toast. 

 


	Service Overview: Presence API
	Introduction
	Core Functionality
	Technical Implementation
	1. State Management
	2. Rich Presence Data (RPD)
	3. Invitation Flow: "The Join-In"

	API Endpoints (Internal)
	Best Practices for Game Teams

	Integration Guide: Real-Time Invitations
	1. Architectural Overview
	2. Implementation: Sending an Invite
	3. Implementation: Handling Incoming Invites
	A. The Notification (Toast)
	B. The Join Logic

	4. Technical Constraints & Edge Cases



