
Joseph Perez Sample – Conceptual (fiction inspired by Google)

 1

NexusGraph Connectivity Protobuf

Overview
The NexusGraph service provides the source of truth for all navigable topology. When other
Google teams (such as the autonomous vehicle or logistics groups) need to overlay custom
data onto the base map, they must conform to the EdgeWeight and NodeDescriptor schemas
defined below. These schemas ensure that any data "side-loaded" into the map is
semantically compatible with the TerraFlow rendering pipeline.

Protobuf Structure: connectivity_metadata.proto

The core of our normalization logic resides in how we define a "Road Segment." Below is a
simplified representation of the internal schema used to synchronize routing logic with
visual rendering.

Protocol Buffers
syntax = "proto3";

package maps.core.nexusgraph;

// Represents a single navigable segment in the global map graph.

message NavigableEdge {

 fixed64 edge_id = 1; // Unique identifier linked to TerraFlow geometry

 // The physical properties of the segment

 message PhysicalAttributes {

 float length_meters = 1;

 uint32 lane_count = 2;

 SurfaceType surface = 3;

 bool is_covered = 4; // Bridges/Tunnels

 }

 // The logic that dictates how the Routing Engine treats this edge

 message RoutingConstraints {

 bool allows_pedestrians = 1;

 bool allows_bicycles = 2;

 uint32 speed_limit_kph = 3;

 repeated TurnRestriction restrictions = 4;

 }

 PhysicalAttributes physical = 2;

 RoutingConstraints logic = 3;

 // Maps this logical edge to specific UI layers in GeoStencils

 repeated string stencil_layer_ids = 4;

}

Joseph Perez Sample – Conceptual (fiction inspired by Google)

 2

Post-Launch Implementation Details

1. Field Masking for Latency Control

When documenting this for the GridStream API, we emphasized the use of FieldMasks. For
mobile clients (iOS/Android), requesting the full NavigableEdge proto is often too expensive.
By using masks, the mobile SDK can request only the edge_id and speed_limit_kph for real-
time display, while backend routing services can pull the full RoutingConstraints for
pathfinding.

2. The "Z-Level" Normalization

One of the most complex aspects of the documentation involved the is_covered and
stencil_layer_ids fields. In a 2D rendering world, an overpass and a surface road look like they
intersect.

• Our post-processing logic assigns unique Z-indices to edges.
• The documentation guides developers on how to use these indices to ensure that

emergency incident markers (e.g., a "Car Accident" icon) appear on the top deck of
a bridge rather than on the road beneath it.

3. Handling Mobile Variability

Because the GridStream-A (Android) and GridStream-i (iOS) stacks use different
underlying memory models, the Protobuf was designed to be "Stream-Friendly." The edges
are sorted by a Spatial S2 Cell ID rather than a sequential ID. This allows mobile devices to
deserialize only the map segments currently within the user's viewport, preventing memory
overflows during cross-country navigation.

Comparison: Design Doc vs. Implementation Guide

Feature Design Doc (Pre-Launch) Technical Reference (Post-Launch)

Primary Goal
Argue for a specific
architecture.

Enable third-party integration.

Error Handling Theoretical failure modes.
Actionable GRPC error codes and recovery
steps.

Payload
Examples

Conceptual JSON/Protos. Production-ready, wire-sniffed examples.

Joseph Perez Sample – Conceptual (fiction inspired by Google)

 3

Troubleshooting & Integration Pitfalls
Below are the most common failure modes identified during the initial rollout.

1. The "Off-Road" Snap Failure

Symptom: The navigation blue line "jumps" to a parallel frontage road or a parking lot path
instead of staying on the highway.

• The Cause: This usually occurs when the caller fails to provide the RoadClass filter
in their FieldMask. If the client only pulls raw coordinates without the functional
road class (FRC) metadata, the snap-to-road algorithm is not supported.

• The Fix: Ensure your GridStreamRequest includes PhysicalAttributes.surface
and RoutingConstraints.speed_limit_kph. The client-side interpolator uses these
to weight the probability of the user's GPS "ping" belonging to a specific edge_id.

2. Protobuf Version Mismatch (Shadow Deprecations)

Symptom: NavigableEdge fields return as default values (0 or null) despite data existing in
the UI.

• The Cause: Because TerraFlow is a rolling pipeline, we occasionally "shadow-
deprecate" fields. For example, moving from uint32 speed_limit to a more
granular SpeedLimit proto message.

• The Fix: Check your stubby logs for DEPRECATED_FIELD_ACCESS warnings. Always
use the latest generated .proto definitions from the //geostore/base/public
depot rather than local copies.

For Further Reading
To provide a deeper context for engineers who need to extend the Core Maps Platform
functionality, please refer to the following internal resources.

• go/terraflow-pipelines: The canonical guide to how raw satellite and street-view
imagery is vectorized into the PhysicalAttributes message. Use this if you need to
add a new road surface type (e.g., "gravel" or "cobblestone").

• go/nexusgraph-s2-sharding: A deep dive into how we use S2 Geometry to shard
the global map graph. Essential reading if you are experiencing high latency in high-
density urban areas like Tokyo or Manhattan.

• go/gridstream-api-best-practices: A comprehensive list of gRPC deadlining
strategies to ensure that map rendering doesn't block the main UI thread on lower-
end Android hardware.

	NexusGraph Connectivity Protobuf
	Overview
	Protobuf Structure: connectivity_metadata.proto
	Protocol Buffers
	Post-Launch Implementation Details
	1. Field Masking for Latency Control
	2. The "Z-Level" Normalization
	3. Handling Mobile Variability

	Comparison: Design Doc vs. Implementation Guide
	Troubleshooting & Integration Pitfalls
	1. The "Off-Road" Snap Failure
	2. Protobuf Version Mismatch (Shadow Deprecations)

	For Further Reading

