Joseph Perez Sample — Conceptual (fiction inspired by Google)

NexusGraph Connectivity Protobuf

Overview

The NexusGraph service provides the source of truth for all navigable topology. When other
Google teams (such as the autonomous vehicle or logistics groups) need to overlay custom
data onto the base map, they must conform to the EdgeWeight and NodeDescriptor schemas
defined below. These schemas ensure that any data "side-loaded" into the map is
semantically compatible with the TerraFlow rendering pipeline.

Protobuf Structure: connectivity_metadata.proto

The core of our normalization logic resides in how we define a "Road Segment." Below is a
simplified representation of the internal schema used to synchronize routing logic with
visual rendering.

Protocol Buffers

syntax = "proto3";
package maps.core.nexusgraph;

// Represents a single navigable segment in the global map graph.
message NavigableEdge {
fixed64 edge id = 1; // Unique identifier linked to TerraFlow geometry

// The physical properties of the segment
message PhysicalAttributes {

float length meters = 1;

uint32 lane count = 2;

SurfaceType surface = 3;

bool is covered = 4; // Bridges/Tunnels

}

// The logic that dictates how the Routing Engine treats this edge
message RoutingConstraints {

bool allows pedestrians = 1;

bool allows bicycles = 2;

uint32 speed limit kph = 3;

repeated TurnRestriction restrictions = 4;

}

PhysicalAttributes physical = 2;
RoutingConstraints logic = 3;

// Maps this logical edge to specific UI layers in GeoStencils
repeated string stencil layer ids = 4;

Joseph Perez Sample — Conceptual (fiction inspired by Google)

Post-Launch Implementation Details

1. Field Masking for Latency Control

When documenting this for the GridStream API, we emphasized the use of FieldMasks. For
mobile clients (i0S/Android), requesting the full NavigableEdge proto is often too expensive.
By using masks, the mobile SDK can request only the edge_id and speed_limit_kph for real-
time display, while backend routing services can pull the full RoutingConstraints for
pathfinding.

2. The "Z-Level" Normalization

One of the most complex aspects of the documentation involved the is_covered and
stencil_layer_ids fields. In a 2D rendering world, an overpass and a surface road look like they
intersect.

e Our post-processing logic assigns unique Z-indices to edges.

e The documentation guides developers on how to use these indices to ensure that
emergency incident markers (e.g., a "Car Accident" icon) appear on the top deck of
a bridge rather than on the road beneath it.

3. Handling Mobile Variability

Because the GridStream-A (Android) and GridStream-i (iOS) stacks use different
underlying memory models, the Protobuf was designed to be "Stream-Friendly." The edges
are sorted by a Spatial S2 Cell ID rather than a sequential ID. This allows mobile devices to
deserialize only the map segments currently within the user's viewport, preventing memory
overflows during cross-country navigation.

Comparison: Design Doc vs. Implementation Guide

Feature Design Doc (Pre-Launch) Technical Reference (Post-Launch)

. Argue for a specific) . .
Primary Goal . Enable third-party integration.
architecture.

. . . Actionable GRPC error codes and recovery
Error Handling ||[Theoretical failure modes. ¢
steps.

Payload

Conceptual JSON/Protos. Production-ready, wire-sniffed examples.
Examples

Joseph Perez Sample — Conceptual (fiction inspired by Google)

Troubleshooting & Integration Pitfalls

Below are the most common failure modes identified during the initial rollout.

1. The "Off-Road" Snap Failure

Symptom: The navigation blue line "jumps" to a parallel frontage road or a parking lot path
instead of staying on the highway.

The Cause: This usually occurs when the caller fails to provide the roadclass filter
in their FieldMask. If the client only pulls raw coordinates without the functional
road class (FRC) metadata, the snap-to-road algorithm is not supported.

The Fix: Ensure your GridStreamRequest includes PhysicalAttributes.surface
and RoutingConstraints.speed limit kph. The client-side interpolator uses these
to weight the probability of the user's GPS "ping" belonging to a specific edge id.

2. Protobuf Version Mismatch (Shadow Deprecations)

Symptom: NavigableEdge fields return as default values (0 or null) despite data existing in

the UL.

The Cause: Because TerraFlow is a rolling pipeline, we occasionally "shadow-
deprecate" fields. For example, moving from uint32 speed limit toa more
granular SpeedlLimit proto message.

The Fix: Check your stubby logs for DEPRECATED FIELD ACCESS warnings. Always
use the latest generated .proto definitions from the //geostore/base/public
depot rather than local copies.

For Further Reading

To provide a deeper context for engineers who need to extend the Core Maps Platform
functionality, please refer to the following internal resources.

go/terraflow-pipelines: The canonical guide to how raw satellite and street-view
imagery is vectorized into the pPhysicalattributes message. Use this if you need to
add a new road surface type (e.g., "gravel" or "cobblestone").
go/nexusgraph-s2-sharding: A deep dive into how we use S2 Geometry to shard
the global map graph. Essential reading if you are experiencing high latency in high-
density urban areas like Tokyo or Manhattan.

go/gridstream-api-best-practices: A comprehensive list of grpC deadlining
strategies to ensure that map rendering doesn't block the main Ul thread on lower-
end Android hardware.

	NexusGraph Connectivity Protobuf
	Overview
	Protobuf Structure: connectivity_metadata.proto
	Protocol Buffers
	Post-Launch Implementation Details
	1. Field Masking for Latency Control
	2. The "Z-Level" Normalization
	3. Handling Mobile Variability

	Comparison: Design Doc vs. Implementation Guide
	Troubleshooting & Integration Pitfalls
	1. The "Off-Road" Snap Failure
	2. Protobuf Version Mismatch (Shadow Deprecations)

	For Further Reading

