
Build a streaming data source plugin
This tutorial will teach you how to build a Grafana streaming data source plugin using the
create-plugin tool and example source code.

A streaming data source plugin refreshes the data in your plugin only when new data is
available in your data source. This approach is different than the typical method in which a
dashboard is set to automatically refresh at a specified interval. The main advantage of
streaming is that it eliminates the overhead of running your queries all over again each time
the data needs updating.

This tutorial shows how to create a data source plugin with both a frontend and a backend.
When you have completed the tutorial, you will have built a plugin that generates random
numbers on the backend that are returned to the frontend as a visualization.

Example screenshot and code
The following image shows a panel using this data source:

Grafana streaming data source.

Step 1: Scaffold the plugin
It is possible to create all the plugin code from scratch, as long as you follow the Grafana
plugins specification and implement all the necessary interfaces. However, the easiest way
to create a plugin is using the @grafana/create-plugin tool that we provide.

Go to the location where you want your plugin directory to be created and run:

npx @grafana/create-plugin@latest

note

For a complete list of prerequisites and suggestions for setting up your development
environment, refer to Get started.

Create Plugin will prompt you with some questions about your plugin name and type, your
organization, and many other options.

For this tutorial, enter data source for the type of the plugin, and specify that it has a
backend part.

The tool will create a skeleton with all the necessary code and dependencies to run a data
source plugin backend component. And, if you compile the code, you will have a very
simple plugin backend. However, this generated code isn't a streaming plugin yet, and we
need to make some modifications.

Step 2: Set up the frontend
As we want to pass some parameters to the backend part of the plugin, we first alter
/src/components/QueryEditor.tsx. This component defines the inputs that the user can
provide to the query. We will add three number inputs, used to generate our data:

• tickInterval - the interval for generating the data
• upperLimit - the upper limit for the random numbers
• lowerLimit - the lower limit for the random numbers

To accomplish this, follow these steps.

1. Replace the QueryEditor function in /src/components/QueryEditor.tsx with the
following code:

export function QueryEditor({ query, onChange, onRunQuery }: Props)

{

 const onLowerLimitChange = (event: ChangeEvent<HTMLInputElement>)

=> {

 onChange({ ...query, lowerLimit: event.target.valueAsNumber });

 };

 const onUpperLimitChange = (event: ChangeEvent<HTMLInputElement>)

=> {

 onChange({ ...query, upperLimit: event.target.valueAsNumber });

 };

 const onTickIntervalChange = (event:

ChangeEvent<HTMLInputElement>) => {

 onChange({ ...query, tickInterval: event.target.valueAsNumber

});

 };

 const { upperLimit, lowerLimit, tickInterval } = query;

 return (

 <>

 <InlineField label="Lower Limit" labelWidth={16}

tooltip="Random numbers lower limit">

 <Input onChange={onLowerLimitChange} onBlur={onRunQuery}

value={lowerLimit || ''} type="number" />

 </InlineField>

 <InlineField label="Upper Limit" labelWidth={16}

tooltip="Random numbers upper limit">

 <Input onChange={onUpperLimitChange} onBlur={onRunQuery}

value={upperLimit || ''} type="number" />

 </InlineField>

 <InlineField label="Tick interval" labelWidth={16}

tooltip="Server tick interval">

 <Input onChange={onTickIntervalChange} onBlur={onRunQuery}

value={tickInterval || ''} type="number" />

 </InlineField>

 <>

);

}

In the src/datasource.ts file, indicate a query through a stream channel. This file is where
the query executed by the frontend part of your plugin is made.

2. Add the following method to the DataSource class:

 query(request: DataQueryRequest<MyQuery>):

Observable<DataQueryResponse> {

 const observables = request.targets.map((query, index) => {

 return getGrafanaLiveSrv().getDataStream({

 addr: {

 scope: LiveChannelScope.DataSource,

 namespace: this.uid,

 path: `my-ws/custom-${query.lowerLimit}-

${query.upperLimit}-${query.tickInterval}`, // this will allow each

new query to create a new connection

 data: {

 ...query,

 },

 },

 });

 });

 return merge(...observables);

 }

The call to getGrafanaLiveSrv() returns a reference to a Grafana backend, and the
getDataStream call creates the stream. As shown in this code snippet, we need to provide
some data to create the stream:

• scope - defines how the channel is used and controlled (specify data source)
• namespace - unique identifier for our specific data source
• path - part that can distinguish between channels created by the same data source.

In this example, we want to create a different channel for every query, so we will use
the query parameters as part of the path.

• data - used to exchange information between the frontend and the backend

It's worth mentioning that the path can be used to exchange data with the backend part as
well, but for complex formats, use the data property.

note

The stream is uniquely identified by a combination of parameters and it will have the
format: ${scope}/${namespace}/${path}. This is only an implementation detail and
you probably won't need to know this except for debugging.

Step 3: Set up the plugin backend
Now we need to add the necessary code to the backend. For that, we change
pkg/plugin/datasource.go, this is where the backend part responsible for handling the
queries created by the frontend is defined. In our case, as we want to handle a stream, we
need to implement the backend.StreamHandler.

Add the following part in the replacement of the var:

var (

 _ backend.CheckHealthHandler = (*Datasource)(nil)

 _ instancemgmt.InstanceDisposer = (*Datasource)(nil)

 _ backend.StreamHandler = (*Datasource)(nil)

)

That means our DataSource will implement backend.CheckHealthHandler,
instancemgmt.InstanceDisposer, and backend.StreamHandler. The methods necessary for
the first two are already provided in the scaffold; therefore, we need to implement only the
methods necessary for backend.StreamHandler.

Let's start by adding the SubscribeStream method:

func (d *Datasource) SubscribeStream(context.Context,

*backend.SubscribeStreamRequest) (*backend.SubscribeStreamResponse,

error) {

 return &backend.SubscribeStreamResponse{

 Status: backend.SubscribeStreamStatusOK,

 }, nil

}

This code will be called when the user tries to subscribe to a channel. You can implement
permissions checking here, but in our case we just want the user to connect successfully in
each attempt; therefore, we just return a backend: SubscribeStreamStatusOK.

Implement the PublishStream method:

func (d *Datasource) PublishStream(context.Context,

*backend.PublishStreamRequest) (*backend.PublishStreamResponse,

error) {

 return &backend.PublishStreamResponse{

 Status: backend.PublishStreamStatusPermissionDenied,

 }, nil

}

This code is called whenever a user tries to publish to a channel. As we don't want to
receive any data from the frontend after the first connection is created, we will just return a
backend.PublishStreamStatusPermissionDenied.

To prevent a random error, change the CheckHealth method provided by default for the
following code:

 func (d *Datasource) CheckHealth(_ context.Context, req

*backend.CheckHealthRequest) (*backend.CheckHealthResult, error) {

 return &backend.CheckHealthResult{

 Status: backend.HealthStatusOk,

 Message: "Data source is working",

 }, nil

 }

Note that this code is not related to the streaming plugin itself. It's just to avoid a random
error that will be caused by not changing the default.

Finally, implement the RunStream method:

func (d *Datasource) RunStream(ctx context.Context, req

*backend.RunStreamRequest, sender *backend.StreamSender) error {

 q := Query{}

 json.Unmarshal(req.Data, &q)

 s := rand.NewSource(time.Now().UnixNano())

 r := rand.New(s)

 ticker := time.NewTicker(time.Duration(q.TickInterval) *

time.Millisecond)

 defer ticker.Stop()

 for {

 select {

 case <-ctx.Done():

 return ctx.Err()

 case <-ticker.C:

 // we generate a random value using the intervals

provided by the frontend

 randomValue := r.Float64()*(q.UpperLimit-q.LowerLimit) +

q.LowerLimit

 err := sender.SendFrame(

 data.NewFrame(

 "response",

 data.NewField("time", nil,

[]time.Time{time.Now()}),

 data.NewField("value", nil,

[]float64{randomValue})),

 data.IncludeAll,

)

 if err != nil {

 Logger.Error("Failed send frame", "error", err)

 }

 }

 }

}

Once implemented, this method will be called once per connection and this is where we
can parse the data sent by the frontend so that Grafana can send the data back
continuously. In this specific example, we will use the data sent by the frontend to define
the frequency at which we will be sending frames and the range of random numbers
generated.

Therefore, the first part of the method parses the data and the query is defined as a struct.

Add the following code to ./pkg/plugin/query.go:

 type Query struct {

 UpperLimit float64 `json:"upperLimit"`

 LowerLimit float64 `json:"lowerLimit"`

 TickInterval float64 `json:"tickInterval"`

 }

In this example, we are creating a ticker and an infinity loop based on this ticker. Whenever
the ticker times out, we will enter the second case of the select and generate a random
number randomValue. After we will create a data frame using data.NewFrame, that
contains the randomValue and the current time, and send it using sender.SendFrame. This
loop will run indefinitely until we close the channel.

tip

You can remove the method QueryData that is created by the scaffold and all the
code related to it since we are not implementing the backend.QueryDataHandler
anymore.

Step 4: Modify plugin.json
Grafana needs to recognize that the new plugin is a streaming plugin when it's first loaded.
To accomplish this, simply add the "streaming":true property to your src/plugin.json. It
should look like this:

{

 ...

 "id": "grafana-streamingbackendexample-datasource",

 "metrics": true,

 "backend": true,

 ...

 "streaming": true

}

Step 5: Build the plugin
The coding part of the plugin development process is done. Now we need to generate our
plugin package to be able to run it in Grafana. Since our plugin has both a frontend and a
backend part, we do this in two steps.

Build the frontend:

npm install

npm run build

This should download all the dependencies and create the plugin frontend files in the ./dist
directory.

Compile the backend code and generate the plugin binaries. For that you should have
mage installed and then you simply need to run:

mage -v

This command compiles the Go code and generates binaries for all Grafana-supported
platforms in ./dist.

Step 6: Run the plugin
Once the plugin is built, copy ./dist together with its content, rename it to the id of your
plugin, put it in the plugin's path of your Grafana instance, and test it.

However, there is an easier way of doing all this.

Run:

npm run server

This command runs a Grafana container using docker compose and puts the built plugins
in the right place.

To verify the build, go to Grafana at https://localhost:3000.

Step 7: Test the plugin
From Grafana at https://localhost:3000, use the default credentials: username admin and
password admin. If you're not presented with a login page, click Sign in in the top of the
page and insert the credentials.

Add the data source. Since we are running in our docker compose environment, we don't
need to install it, and it will be directly available for usage. Go to Connections > Data
sources, using the left menu as shown in the following image:

A new page opens, and then click Add data source. Grafana opens another page where you
can search for the data source name that we've just created.

Click the data source's card, and then click Save & test on the next page.

Click Build a dashboard in the upper corner. On the next page, click a button to + Add
visualization. On the dialog box, click the newly added data source. Data begins to appear
like so:

To visualize the data better, change the visualization time range to something like 1 minute
from now and apply it.

At that point, you should start seeing data in real-time. You can change the upper and lower
limit or the tick interval if you want. This will generate a new query, and the panel will be
updated. You can also add more queries if you want.

You have successfully created a Grafana streaming data source plugin with both a frontend
and backend. The plugin is ready for you to customize to suit your specific needs.

	Example screenshot and code
	Step 1: Scaffold the plugin
	Step 2: Set up the frontend
	Step 3: Set up the plugin backend
	Step 4: Modify plugin.json
	Step 5: Build the plugin
	Step 6: Run the plugin
	Step 7: Test the plugin

